Tag Archives: UNSW

Clean gas, clean air

New technologies are making natural gas a cheaper and greener fuel

Air quality in China’s cities is improving thanks to government initiatives to reduce urban coal burning. In Beijing, for example, homes, schools, hospitals and factories are switching from coal to gas for heating. As a result, demand for gas has quadrupled over the past decade. Now Australian researchers are partnering with Chinese industry to make gas production even cleaner and more efficient.

Both countries will benefit. China has large gas reserves but much of the gas is in unconventional sources such as coal seam gas and shale gas. The gases from these sources can contain less than 50 per cent methane so impurities such as carbon dioxide and nitrogen must be removed. For nitrogen that usually means cooling the gas to separate the valuable methane from the nitrogen in an energy-intensive process costing billions of dollars.

Continue reading Clean gas, clean air

The ‘coolest’ place for astronomy

High on the Antarctic Plateau, in one of the coldest places on Earth, a group of telescopes are peering through stellar dust clouds into the heart of our galaxy.

The cold helps counteract interference from the telescopes and surrounding equipment, which can hinder our ability to see relatively
‘cool’ objects in space, such as asteroids, young stars, and interstellar gas.

Continue reading The ‘coolest’ place for astronomy

50 CubeSats to explore the thermosphere

Australian universities joined a European fleet of CubeSats to explore a little-known layer of the atmosphere.

In May 2017, the European Union led a mission called QB50 to launch a constellation of 50 mini-satellites from the International Space Station. The pocket-sized CubeSats set out to study the thermosphere, the layer of Earth’s atmosphere between 90 and 600 kilometres above the ground that carries signals from GPS and other satellites.

Continue reading 50 CubeSats to explore the thermosphere

Compound interest

What happens when disaster builds on disaster

Climate change will bring hotter weather and rising seas, but what it means for natural disasters such as floods and fires is less clear.

Part of the difficulty is that such catastrophes are often “compound events” in which multiple factors combine to wreak havoc.

Continue reading Compound interest

Studying heart development one cell at a time

Examining how individual heart cells develop is revealing how the cells make decisions to form a working heart.

Once an adult heart is damaged, it has no ability to heal itself. Dr Nathan Palpant at the Institute for Molecular Bioscience at the University of Queensland and Associate Professor Joseph Powell at the Garvan Institute of Medical Research and the University of New South Wales are trying to understand how that might be changed by tracking individual stem cells along their journey to becoming heart cells.

“Heart development is a difficult and complicated process, but we think the answers to heart repair are likely to lie in understanding heart development,” Nathan says. “So we are using stem cells to model development as it occurs in our bodies.” Continue reading Studying heart development one cell at a time

Clearing corneas and restoring vision

The eye’s cornea depends on stem cells to help maintain transparency. If disease or trauma deplete stem cell reservoirs, a rapid and painful loss of vision soon follows.

Professor Stephanie Watson and Professor Nick Di Girolamo have used stem cells to repair their patients’ vision. It’s the culmination of a 15-year collaboration to restore sight in Australians with corneal disease.

Stephanie is an international leader in research and innovation with the University of Sydney and is also a practising corneal surgeon. She met Nick as an early career scientist through a research group at the University of New South Wales and they discovered their shared interest. Nick is now a Director with the School of Medical Sciences at UNSW. Continue reading Clearing corneas and restoring vision

Fuel for the future

Cooking with a hydrogen-powered barbeque

The need to shift from fossil fuels to cleaner energy technologies is becoming more urgent, and Australia’s trading partners are demanding low-emission energy sources.

Electricity production from renewables can be variable, and any excess electricity must be stored for use on days with less wind or sun. Battery systems are used for storage, but they have limitations.

An alternative is to store energy in the form of hydrogen.

Continue reading Fuel for the future

Mission design at rocket speed

Planning space missions is traditionally a time-consuming and costly process. But the new Australian National Concurrent Design Facility (ANCDF), housed at UNSW’s Canberra campus, speeds things up so a mission can be planned in weeks rather than months.

Harnessing the expertise, design processes and software of the French Space Agency CNES (Centre National d’Etudes Spatiales), the UNSW team has created Australia’s first concurrent design facility.

The ANCDF allows engineers and scientists—both professionals and students—to design different parts of a mission in parallel rather than one after the other, which is the traditional approach.

Continue reading Mission design at rocket speed

Creating living cell factories

“We make bacteria do amazing things.”

Researchers at the University of Adelaide and the Pasteur Institute in France are creating biological factories within cells to make and detect molecules for a wide range of uses in health, environmental monitoring and industry.

Synthetic biology—the application of engineering principles to build new biological parts, circuits and devices—has been used to build tumour-killing bacteria, for example, and has great potential for green chemistry that uses fermentation rather than petrochemicals.

Continue reading Creating living cell factories

Balloons over the Red Centre

A perfect view of the Milky Way

On a series of calm, cool mornings in April 2017, 70 French scientists (from the French space science agency CNES, CNRS IRAP, and the Université Paul Sabatier de Toulouse) launched three enormous balloons into the sky above the heart of Australia.

CNES was using the Alice Springs Balloon Launching Centre (ASBLS) to send three precision scientific instruments up to altitudes of 30–40 kilometres to make observations that are impossible from the ground.

Continue reading Balloons over the Red Centre