All posts by Operations

A safe haven for frogs in a sea of extinctions

New Guinea is one of the only places in the world where frogs are safe from the species-destroying chytrid fungus. An international team of scientists has published a new paper that shows how to keep it that way, but they need help to carry out their plan.

The chytrid fungus has wiped out more than 90 frog species around the world, and it’s driving hundreds more towards extinction. New Guinea – the world’s largest tropical island, and home to 6% of all known frog species – is one of the last remaining refuges from the deadly infection.

A team of scientists led by researchers from Macquarie University and the University of New England in Australia think they know how to keep the island’s frogs safe, but they need support to establish a long-term program of monitoring and conservation.

Continue reading A safe haven for frogs in a sea of extinctions

Earth recycles ocean floor into diamonds

Most diamonds are made of cooked seabed.

The diamond on your finger is most likely made of recycled seabed cooked deep in the Earth.

Traces of salt trapped in many diamonds show the stones are formed from ancient seabeds that became buried deep beneath the Earth’s crust, according to new research led by Macquarie University geoscientists.

Most diamonds found at the Earth’s surface are formed this way; others are created by crystallization of melts deep in the mantle.

In experiments recreating the extreme pressures and temperatures found 200 kilometres underground, Dr Michael Förster, Professor Stephen Foley, Dr Olivier Alard, and colleagues at Goethe Universität and Johannes Gutenberg Universität in Germany, have demonstrated that seawater in sediment from the bottom of the ocean reacts in the right way to produce the balance of salts found in diamond.

The study, published in Science Advances, settles a long-standing question about the formation of diamonds. “There was a theory that the salts trapped inside diamonds came from marine seawater, but couldn’t be tested,” says lead author Michael. “Our research showed that they came from marine sediment.”

Continue reading Earth recycles ocean floor into diamonds

More safe havens for native plants and animals needed in NSW’s west

Location matters for species struggling to survive under a changing climate.

A new study led by Macquarie University has found we need to provide more safe havens for wildlife and plant species to survive under climate change in New South Wales’ west.

Along the Great Dividing Range, the vulnerable spotted-tailed quoll will be forced to move into higher habitats as the climate changes, but can find sanctuary in protected areas like Kosciuszko National Park.

The squirrel glider, also listed as a vulnerable species, will have more suitable places to live under climate change. However, few of its potential new homes in central western New South Wales are adequately protected.

Continue reading More safe havens for native plants and animals needed in NSW’s west

Fixing hearts by finding out what makes them tick

You can learn a lot about hearts by trying to build one from scratch. A pair of scientists have grown ‘beating’ human heart muscle tissue from stem cells and are exploring cardiac regeneration.

Developmental biologist Associate Professor Enzo Porrello became interested in how newborn mammal hearts can regenerate while working in Dallas, Texas at one of the leading labs researching heart development.

Associate Professor James Hudson has a background in chemical and biological engineering. In Germany, he developed bioengineering techniques to make force-generating human heart tissue at the University Medical Center in Göttingen. Continue reading Fixing hearts by finding out what makes them tick

Modelling brain circuitry

With the help of a revolutionary robot, Professor David Adams and Associate Professor Mirella Dottori are studying neurons, testing drug candidates for chronic pain, and working towards precise, personalised neurological treatment.

David has been studying the neurology of chronic pain, while Mirella is a neural stem cell expert. Based at the University of Wollongong, their collaboration focusses on cells called dorsal root ganglia sensory neurons. These cells sense pressure, temperature, position, touch and pain, and the duo believe they could hold the key to many neurological disorders including chronic pain.

“Many diseases and disorders are caused by altered firing of signals along sensory nerves. Growing human sensory neurons [from stem cells] means we can study their development and function in both health and disease,” says Mirella. Continue reading Modelling brain circuitry

Studying heart development one cell at a time

Examining how individual heart cells develop is revealing how the cells make decisions to form a working heart.

Once an adult heart is damaged, it has no ability to heal itself. Dr Nathan Palpant at the Institute for Molecular Bioscience at the University of Queensland and Associate Professor Joseph Powell at the Garvan Institute of Medical Research and the University of New South Wales are trying to understand how that might be changed by tracking individual stem cells along their journey to becoming heart cells.

“Heart development is a difficult and complicated process, but we think the answers to heart repair are likely to lie in understanding heart development,” Nathan says. “So we are using stem cells to model development as it occurs in our bodies.” Continue reading Studying heart development one cell at a time

Big data points the way to custom stem cells

Genomic biologist Professor Christine Wells and biostatistician Dr Kim-Anh Le Cao are analysing big data to discover what makes stem cells tick. Already the pair have found new ways to classify stem cells, and they’re working on predicting the cells’ behaviour and even creating custom immune cells.  

Christine directs Stemformatics, an online encyclopaedia of hundreds of high-quality stem cell studies from other researchers vetted and archived by Christine’s team. They’ve amassed an enormous amount of data about genetic activity in certain stem cell types at many stages of development.

To find trends across the studies, Christine called on Kim-Anh’s statistical expertise. Continue reading Big data points the way to custom stem cells

Clearing corneas and restoring vision

The eye’s cornea depends on stem cells to help maintain transparency. If disease or trauma deplete stem cell reservoirs, a rapid and painful loss of vision soon follows.

Professor Stephanie Watson and Professor Nick Di Girolamo have used stem cells to repair their patients’ vision. It’s the culmination of a 15-year collaboration to restore sight in Australians with corneal disease.

Stephanie is an international leader in research and innovation with the University of Sydney and is also a practising corneal surgeon. She met Nick as an early career scientist through a research group at the University of New South Wales and they discovered their shared interest. Nick is now a Director with the School of Medical Sciences at UNSW. Continue reading Clearing corneas and restoring vision

Enlisting the brain’s immune cells to fight MS

The brain’s specialist cleaning cells play a key role in neurodegenerative diseases, and they may also hold the secret to new treatments for the likes of MS and Alzheimer’s.

Professor Colin Pouton and his team at the Monash Institute of Pharmaceutical Sciences found a way to isolate microglia, the immune cells of the brain, from stem cells. Better yet, they made the cells fluorescent so their activity can be tracked, opening up new avenues of research.

Professor Trevor Kilpatrick and his colleagues at the Florey Institute of Neuroscience and Mental Health think Colin’s engineered cells just might be the key to creating a revolutionary treatment for multiple sclerosis. Continue reading Enlisting the brain’s immune cells to fight MS

Tomorrow’s medicine starts today – Stem Cells Australia

Since its creation in 2011, the Stem Cells Australia initiative has increased our understanding of how to control and use stem cells in research. Our members have placed Australia at the forefront of stem cell medicine, and now we are developing new diagnostic, therapeutic and biological applications that will transform healthcare in the years and decades ahead.

Today, Stem Cells Australia members are:

Our researchers are learning about how the heart forms so they can identify drugs to stimulate heart repair and improve function; they are analysing big data to predict how cells behave and create custom immune cells; they are helping patients with damaged corneas see again using grafts made from their own stem cells; and much more.

Many of these achievements rely on large interdisciplinary teams from across Australia. Continue reading Tomorrow’s medicine starts today – Stem Cells Australia