Cyclones can damage even distant reefs

Research finds current models underestimate the impact of hurricanes and typhoons on coral reef communities

The same area of Scott Reef photographed in 2010, and again in 2012 after Cyclone Lua. Credit: James Gilmour/AIMS

Big and strong cyclones can harm coral reefs as far as 1000 kilometres away from their paths, new research shows.

A study led by Dr Marji Puotinen from the Australian Institute of Marine Science (AIMS) sounds a warning about the way strong cyclone winds build extreme seas that affect coral reefs in Australia and around the world.

Conventional modelling used to predict how a cyclone, hurricane or typhoon might impact corals assumes that wave damage occurs primarily within 100 kilometres of its track.

Continue reading Cyclones can damage even distant reefs

Astronomers see ‘cosmic ring of fire’, 11 billion years ago

Unusual galaxy set to prompt rethink on how structures in the Universe form

Astronomers have captured an image of a super-rare type of galaxy – described as a “cosmic ring of fire” – as it existed 11 billion years ago.

The galaxy, which has roughly the mass of the Milky Way, is circular with a hole in the middle, rather like a titanic doughnut. Its discovery, announced in the journal Nature Astronomy, is set to shake up theories about the earliest formation of galactic structures and how they evolve.

Continue reading Astronomers see ‘cosmic ring of fire’, 11 billion years ago

3D-printed system speeds up solar cell testing from hours to minutes

Australian scientists flag dramatic improvement to next-gen perovskite R&D

A detail from the new 16-channel parallel characterisation system.
Credit: Adam Surmiak, Xiongfeng Lin

Tests on new designs for next-gen solar cells can now be done in hours instead of days thanks to a new system built by scientists at Australia’s Monash University, incorporating 3D-printed key components.

The machine can analyse 16 sample perovskite-based solar cells simultaneously, in parallel, dramatically speeding up the process.

The invention means that the performance and commercial potential of new compounds can be very rapidly evaluated, significantly speeding up the development process.

Continue reading 3D-printed system speeds up solar cell testing from hours to minutes

Fish faeces reveals which species eat crown-of-thorns

Great Barrier Reef research finds the destructive starfish is eaten more often than thought.

Dr Frederieke Kroon looking at a crown-of-thorns starfish on the Great Barrier Reef. Credit: D.Westcott/CSIRO

Crown-of-thorns starfish are on the menu for many more fish species than previously suspected, an investigation using fish poo and gut goo reveals.

The finding suggests that some fish, including popular eating and aquarium species, might have a role to play in keeping the destructive pest population under control.

Continue reading Fish faeces reveals which species eat crown-of-thorns

Hungry galaxies grow fat on the flesh of their neighbours

Modelling shows big galaxies get bigger by merging with smaller ones

Distribution of dark matter density overlayed with the gas density. This image cleanly shows the gas channels connecting the central galaxy with its neighbours. Credit: Gupta et al/ASTRO 3D/ IllustrisTNG collaboration.

Galaxies grow large by eating their smaller neighbours, new research reveals.

Exactly how massive galaxies attain their size is poorly understood, not least because they swell over billions of years. But now a combination of observation and modelling from researchers led by Dr Anshu Gupta from Australia’s ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has provided a vital clue.

Continue reading Hungry galaxies grow fat on the flesh of their neighbours

Windows will soon generate electricity, following solar cell breakthrough

Two square metres of solar window will do the same job as a standard rooftop solar panel, Australian researchers say.

A semi-transparent perovskite solar cell with contrasting levels of light transparency.
Credits: Dr Jae Choul Yu

Semi-transparent solar cells that can be incorporated into window glass are a “game-changer” that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.

The researchers – led by Professor Jacek Jasieniak from the ARC Centre of Excellence in Exciton Science (Exciton Science) and Monash University – have succeeded in producing next-gen perovskite solar cells that generate electricity while allowing light to pass through. They are now investigating how the new technology could be built into commercial products with Viridian Glass, Australia’s largest glass manufacturer.

Continue reading Windows will soon generate electricity, following solar cell breakthrough

Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers

A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing. And it can be manufactured using conventional silicon chip foundries.

Dr Henry Yang and Professor Andrew Dzurak: “hot qubits” are a game-changer for quantum computing development.
Credit: Paul Henderson-Kelly

Most quantum computers being developed around the world will only work at fractions of a degree above absolute zero. That requires multi-million-dollar refrigeration and as soon as you plug them into conventional electronic circuits they’ll instantly overheat.

But now researchers led by Professor Andrew Dzurak at UNSW Sydney have addressed this problem.

Continue reading Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers

Solving a mystery in 126 dimensions

After 90 years, scientists reveal the structure of benzene.

Professor Timothy Schmidt, unravelling the mystery of benzene. Credit Exciton Science

One of the fundamental mysteries of chemistry has been solved by Australian scientists – and the result may have implications for future designs of solar cells, organic light-emitting diodes and other next gen technologies.

Ever since the 1930s debate has raged inside chemistry circles concerning the fundamental structure of benzene. It is a debate that in recent years has taken on added urgency, because benzene – which comprises six carbon atoms matched with six hydrogen atoms – is the smallest molecule that can be used in the production of opto-electronic materials, which are revolutionising renewable energy and telecommunications tech.

Continue reading Solving a mystery in 126 dimensions

Spin doctors: Astrophysicists find when galaxies rotate, size matters

Sky survey provides clues to how they change over time.

A simulation showing a section of the Universe at its broadest scale. A web of cosmic filaments forms a lattice of matter, enclosing vast voids. Credit: Tiamat simulation, Greg Poole

The direction in which a galaxy spins depends on its mass, researchers have found.

A team of astrophysicists analysed 1418 galaxies and found that small ones are likely to spin on a different axis to large ones. The rotation was measured in relation to each galaxy’s closest “cosmic filament” – the largest structures in the universe.

Filaments are massive thread-like formations, comprising huge amounts of matter – including galaxies, gas and, modelling implies, dark matter. They can be 500 million light years long but just 20 million light years wide. At their largest scale, the filaments divide the universe into a vast gravitationally linked lattice interspersed with enormous dark matter voids.

Continue reading Spin doctors: Astrophysicists find when galaxies rotate, size matters