Tag Archives: DNA

An immune ‘fingerprint’ reveals path for better treatment of autoimmune diseases

An immune ‘fingerprint’ reveals path for better treatment of autoimmune diseases

Most autoimmune diseases are easy to diagnose but hard to treat. A paper published in Science proposes using your unique immune cell fingerprint to rapidly identify which treatments will work for your autoimmune disease.

‘We analysed the genomic profile of over one million cells from 1,000 people to identify a fingerprint linking genetic markers to diseases such as multiple sclerosis, rheumatoid arthritis, lupus, type 1 diabetes, spondylitis, inflammatory bowel disease, and Crohn’s disease,’ says Professor Joseph Powell, joint lead author at the Garvan Institute of Medical Research. ‘We were able to do this using single cell sequencing, a new technology that allows us to detect subtle changes in individual cells,’ he says.

Continue reading An immune ‘fingerprint’ reveals path for better treatment of autoimmune diseases

Single test for over 50 genetic diseases will cut diagnosis from decades to days

A new DNA test, developed by researchers at the Garvan Institute of Medical Research in Sydney and collaborators from Australia, UK and Israel, has been shown to identify a range of hard-to-diagnose neurological and neuromuscular genetic diseases quicker and more-accurately than existing tests.

‘We correctly diagnosed all patients with conditions that were already known, including Huntington’s disease, fragile X syndrome, hereditary cerebellar ataxias, myotonic dystrophies, myoclonic epilepsies, motor neuron disease and more,’ says Dr Ira Deveson, Head of Genomics Technologies at the Garvan Institute and senior author of the study.

The diseases covered by the test belong to a class of over 50 diseases caused by unusually-long repetitive DNA sequences in a person’s genes – known as ‘Short Tandem Repeat (STR) expansion disorders’.

Continue reading Single test for over 50 genetic diseases will cut diagnosis from decades to days

Why plumbers and teachers should have a say on designer babies and genetically enhanced potatoes

Ethical and social implications of powerful DNA-altering technology are too important to be left to scientists and politicians, researchers find.

Illustration by Alice Mollon

Designer babies, mutant mozzies and frankenfoods: these are the images that often spring to mind when people think of genome editing.

The practice – which alters an organism’s DNA in ways that could be inherited by subsequent generations – is both more complex and less dramatic than the popular tropes suggest.

However, its implications are so profound that a growing group of experts believe it is too important a matter to be left only to scientists, doctors and politicians.

Writing in the journal Science, 25 leading researchers from across the globe call for the creation of national and global “citizens’ assemblies”, made up of lay-people, tasked with considering the ethical and social impacts of this emerging science.

Continue reading Why plumbers and teachers should have a say on designer babies and genetically enhanced potatoes

Are memories stored in DNA?

The idea that long-term memory might be stored in our brain’s DNA is being tested by Professor Geoff Faulkner, using brains affected by Alzheimer’s.

Geoff has already shown that the DNA in our brains is different to the DNA in the rest of our bodies and that it changes as we learn. He’s proposing that these changes are associated with how we store our long-term memories.

More recently, he’s linked these differences to the function of genes in the hippocampus, the part of the brain that controls memory and spatial navigation, and has been implicated in memory loss with ageing, schizophrenia and Alzheimer’s disease. Continue reading Are memories stored in DNA?

Helping eyes to help themselves

Donor corneas conditioned with DNA before being transplanted into new eyes are already actively contributing to their own success in experimental animals such as sheep.

An Australian research group is making corneal transplant easier. Credit: iStockphoto
An Australian research group is making corneal transplant easier. Credit: iStockphoto
The DNA is inserted into the cells of the cornea after it has been harvested. Then, following implantation, it produces proteins that help overcome immunological rejection.

This is one of many strands of research aimed at increasing the success rates of corneal transplants and other eye disease treatments undertaken by Prof Keryn Williams at Flinders University.
Continue reading Helping eyes to help themselves

Shattering the crystal lattice

Watson and Crick’s discovery of the structure of DNA is arguably the greatest of the 20th century. The significance lies in its profound influence on our understanding of the nature of life and in its striking demonstration of the power of two disciplines – physics and biology – collaborating to solve a major problem.

Continue reading Shattering the crystal lattice

Invasion of the grasses

Native grass Austrostipa scabra. Credit: Janusz Molinski/Royal Botanic Gardens Melbourne
Native grass Austrostipa scabra. Credit: Janusz Molinski/Royal Botanic Gardens Melbourne

DNA barcodes could help farmers and conservationists identify wanted and unwanted grasses.

Identifying grasses is difficult especially when they’re not flowering. But identification is important. Australia’s agriculture and ecology are threatened by invading grasses, such as Chilean needle grass (Nassella neesiana) and serrated tussock (N. trichotoma). And efforts to re-introduce native grasses can be hampered if you can’t tell the grasses apart.

Continue reading Invasion of the grasses