Tag Archives: CNRS

Peptides to fight pain

A new approach to the global chronic pain problem

Chronic pain affects around 20 per cent of the world’s population at any one time. It is the most common reason people seek medical help in Australia. Chronic pain often goes hand in hand with anxiety and depression.

Short chains of amino acids—known as peptides—may offer hope. A collaboration between neurobiologists at The Florey Institute of Neuroscience and Mental Health at The University of Melbourne and CNRS units affiliated with the Universities of Bordeaux and Strasbourg has made significant progress towards an entirely new approach to treating pain.

Continue reading Peptides to fight pain

Cancer, maths and evolution

Shifting the cancer battleground

 A new French-Australian joint cancer laboratory is forging a new way to study cancer by joining experts from different fields including mathematics, cell biology, evolutionary biology, and behavioural ecology.

Cancer is not only a major cause of human death worldwide, but also a disease that affects all multicellular organisms. Despite this, oncology and other biological sciences such as ecology and evolution have developed in relative isolation, according to Dr Beata Ujvari from the Roles of Cancer in Ecology and Evolution International Associated Laboratory at Deakin University. 

“We know that there is a clear reciprocal interaction between malignant cells and their hosts, with malignant cells evolving in response to the organism’s defence mechanisms,” Beata says.

“Cancer also directly and indirectly impacts the physiology, immunology and behaviour of organisms. But very little is actually known of the evolutionary impact of these complex relationships. We are changing that with this type of research, which has rarely been explored before,” Beata says.

The goal is to transform the understanding of cancer, its origin, how to halt its progression, and to prevent therapeutic failures. At the same time, the role of cancer in ecosystem functioning is something that ecologists need to consider.

Researchers say that cancer’s impact on ecosystems could be significant. It can influence an individual’s competitive and dispersal abilities, susceptibility to pathogens and vulnerability to predation. In some cases, such as the facial tumour disease that afflicts Tasmanian devils, it can heavily impact a species.

The joint laboratory is a collaboration between: Dr Frederic Thomas of the Centre for Ecological and Evolutionary Cancer Research at the National Scientific Research Centre (CNRS) in France; Deakin University; and the University of Tasmania, Australia. In Australia, the team has partnered with the Tasmanian Government’s Save the Tasmanian Devil Program and Zoos Victoria.

Banner image : Cancer can have a significant impact on species – such as the Tasmanian devil – and even whole ecosystems. Credit: JJ Harrison

Fuel for the future

Cooking with a hydrogen-powered barbeque

The need to shift from fossil fuels to cleaner energy technologies is becoming more urgent, and Australia’s trading partners are demanding low-emission energy sources.

Electricity production from renewables can be variable, and any excess electricity must be stored for use on days with less wind or sun. Battery systems are used for storage, but they have limitations.

An alternative is to store energy in the form of hydrogen.

Continue reading Fuel for the future

Making light work

Australian and French researchers are teaming up to use photonics—the quantum technology of light—to build better environmental sensors and high-speed data transmitters, and enable sharper MRI scans.

Continue reading Making light work

Balloons over the Red Centre

A perfect view of the Milky Way

On a series of calm, cool mornings in April 2017, 70 French scientists (from the French space science agency CNES, CNRS IRAP, and the Université Paul Sabatier de Toulouse) launched three enormous balloons into the sky above the heart of Australia.

CNES was using the Alice Springs Balloon Launching Centre (ASBLS) to send three precision scientific instruments up to altitudes of 30–40 kilometres to make observations that are impossible from the ground.

Continue reading Balloons over the Red Centre