Tag Archives: stem cells

Stem-cell models reveal glaucoma secrets

Australian researchers uncover hidden genetic markers of glaucoma.

Stem cell models of the retina and optical nerve have been used to identify previously unknown genetic markers of glaucoma, in research jointly led by scientists from the Garvan Institute of Medical Research, the University of Melbourne, and the Centre for Eye Research Australia. The findings open the door to new treatment for glaucoma, which is the world’s leading cause of permanent blindness.

“We saw how the genetic causes of glaucoma act in single cells, and how they vary in different people. Current treatments can only slow the loss of vision, but this understanding is the first step towards drugs that target individual cell types,” says Professor Joseph Powell, joint lead author at the Garvan Institute of Medical Research.

The research, published in the journal Cell Genomics, comes out of a long-running collaboration between Australian medical research centres to use stem-cell models to uncover the underlying genetic causes of complicated diseases.

Continue reading Stem-cell models reveal glaucoma secrets

Fixing hearts by finding out what makes them tick

You can learn a lot about hearts by trying to build one from scratch. A pair of scientists have grown ‘beating’ human heart muscle tissue from stem cells and are exploring cardiac regeneration.

Developmental biologist Associate Professor Enzo Porrello became interested in how newborn mammal hearts can regenerate while working in Dallas, Texas at one of the leading labs researching heart development.

Associate Professor James Hudson has a background in chemical and biological engineering. In Germany, he developed bioengineering techniques to make force-generating human heart tissue at the University Medical Center in Göttingen. Continue reading Fixing hearts by finding out what makes them tick

Modelling brain circuitry

With the help of a revolutionary robot, Professor David Adams and Associate Professor Mirella Dottori are studying neurons, testing drug candidates for chronic pain, and working towards precise, personalised neurological treatment.

David has been studying the neurology of chronic pain, while Mirella is a neural stem cell expert. Based at the University of Wollongong, their collaboration focusses on cells called dorsal root ganglia sensory neurons. These cells sense pressure, temperature, position, touch and pain, and the duo believe they could hold the key to many neurological disorders including chronic pain.

“Many diseases and disorders are caused by altered firing of signals along sensory nerves. Growing human sensory neurons [from stem cells] means we can study their development and function in both health and disease,” says Mirella. Continue reading Modelling brain circuitry

Studying heart development one cell at a time

Examining how individual heart cells develop is revealing how the cells make decisions to form a working heart.

Once an adult heart is damaged, it has no ability to heal itself. Dr Nathan Palpant at the Institute for Molecular Bioscience at the University of Queensland and Associate Professor Joseph Powell at the Garvan Institute of Medical Research and the University of New South Wales are trying to understand how that might be changed by tracking individual stem cells along their journey to becoming heart cells.

“Heart development is a difficult and complicated process, but we think the answers to heart repair are likely to lie in understanding heart development,” Nathan says. “So we are using stem cells to model development as it occurs in our bodies.” Continue reading Studying heart development one cell at a time

Big data points the way to custom stem cells

Genomic biologist Professor Christine Wells and biostatistician Dr Kim-Anh Le Cao are analysing big data to discover what makes stem cells tick. Already the pair have found new ways to classify stem cells, and they’re working on predicting the cells’ behaviour and even creating custom immune cells.

Christine directs Stemformatics, an online encyclopaedia of hundreds of high-quality stem cell studies from other researchers vetted and archived by Christine’s team. They’ve amassed an enormous amount of data about genetic activity in certain stem cell types at many stages of development.

To find trends across the studies, Christine called on Kim-Anh’s statistical expertise. Continue reading Big data points the way to custom stem cells

Enlisting the brain’s immune cells to fight MS

The brain’s specialist cleaning cells play a key role in neurodegenerative diseases, and they may also hold the secret to new treatments for the likes of MS and Alzheimer’s.

Professor Colin Pouton and his team at the Monash Institute of Pharmaceutical Sciences found a way to isolate microglia, the immune cells of the brain, from stem cells. Better yet, they made the cells fluorescent so their activity can be tracked, opening up new avenues of research.

Professor Trevor Kilpatrick and his colleagues at the Florey Institute of Neuroscience and Mental Health think Colin’s engineered cells just might be the key to creating a revolutionary treatment for multiple sclerosis. Continue reading Enlisting the brain’s immune cells to fight MS

Tomorrow’s medicine starts today – Stem Cells Australia

Since its creation in 2011, the Stem Cells Australia initiative has increased our understanding of how to control and use stem cells in research. Our members have placed Australia at the forefront of stem cell medicine, and now we are developing new diagnostic, therapeutic and biological applications that will transform healthcare in the years and decades ahead.

Today, Stem Cells Australia members are:

Our researchers are learning about how the heart forms so they can identify drugs to stimulate heart repair and improve function; they are analysing big data to predict how cells behave and create custom immune cells; they are helping patients with damaged corneas see again using grafts made from their own stem cells; and much more.

Many of these achievements rely on large interdisciplinary teams from across Australia. Continue reading Tomorrow’s medicine starts today – Stem Cells Australia

Micro-lenses bring new cataract treatments in sight

Stem cells are being used to rapidly test and improve treatments for cataracts, thanks to an innovative solution developed by Dr Michael O’Connor and his team from Western Sydney University.

With novel stem cell technology, Michael has created hundreds of thousands of micro-lenses similar to the ones in the human eye. These micro-lenses offer a way to rapidly improve drug research and offer the potential for lens cell transplants in the future. 

Billions of dollars are spent each year around the world on cataract surgery, and hundreds of millions of dollars treating resulting complications. Continue reading Micro-lenses bring new cataract treatments in sight

How reprogramming cells turns back time

For the past decade scientists have been able to reprogram skin cells, nasal cells and other mature cells to become pluripotent stem cells that can turn into any cell type in the human body. How it works is only starting to become clear.

Teams led by Professors Ryan Lister at the University of Western Australia, Jose Polo at Monash University and Ernst Wolvetang at The University of Queensland are working together to understand how this process occurs, whether all cell types follow the same path to becoming pluripotent cells, and if this impacts their ability to mimic disease in the laboratory.

Through a series of collaborations over the last ten years the scientists have uncovered a number of stem cell secrets, opening the door for more targeted research and, ultimately, treatments for diseases. Continue reading How reprogramming cells turns back time

Building tools for brain repair

Professor James Bourne and his team are laying the groundwork for using stem cell transplants to treat brain trauma with the discovery of an anti-scarring agent and new biomaterials to support transplanted cells.

“What we’re doing is a prelude to direct stem cell research. We hope to give potential stem cell therapies for brain trauma the best chance of success,” James says.

He and his team at the Australian Regenerative Medicine Institute at Monash University are studying nonhuman primates to understand how to create the best environments for repair after brain injury. Continue reading Building tools for brain repair