Tag Archives: stem cells

“Who will help me?”

People suffering from serious illnesses are turning to unproven and risky stem cell therapies in growing numbers. Researchers are trying to understand why—and how to provide better information and support.

Stem cells have been saving lives for decades, largely through bone marrow and cord blood transplants treating leukaemia and other blood diseases. Unproven treatments are booming, however, with clinics in Australia and around the world spruiking cures for conditions from osteoarthritis and MS to dementia and diabetes.

Associate Professor Megan Munsie and her colleagues in Stem Cells Australia’s Engagement, Ethics and Policy Program have heard many tales of patients spending thousands of dollars on treatments that often have no benefit and may be harmful or even deadly. Continue reading “Who will help me?”

Mini-kidneys tell two sides of a genetic story

Gene editing technology combined with stem cells provides a powerful new way to study genetic kidney diseases and their treatments.

Melbourne researchers have used mini-kidney ‘organoids’ grown in the lab to unravel the mystery of why Mainzer-Saldino syndrome, a rare disease involving a single defective gene, causes life-threatening kidney damage. In doing so, they’ve proven an approach that can be used to study a whole range of other genetic kidney diseases. Continue reading Mini-kidneys tell two sides of a genetic story

Improving survival for patients with acute leukaemia

Today, 85 per cent of children with leukaemia can be cured, but the outlook for patients over 60 is bleak. Only 10 per cent survive beyond one year as their cancer adapts to weather the storm of standard chemotherapy treatments. Associate Professor Steven Lane wants to change that outlook.

Steven and his team at the QIMR Berghofer Medical Research Institute have developed a method to rapidly profile the genetics of different leukaemia types—of which there are hundreds—and model them in the lab.

This allows them to work with many leukaemia types simultaneously, providing a cheaper, faster and more accurate model of the leukaemia. Continue reading Improving survival for patients with acute leukaemia

Printing a cartilage repair kit

A new printing technology can now simultaneously print living stem cells and the environment they need to survive and become the right cell type. The first application is a cartilage repair kit.

“Our current 3D printers can integrate living and non-living materials in specific arrangements at a range of scales, from micrometres to millimetres,” says Professor Gordon Wallace, Director of the ARC Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong.

“And we’re developing new approaches that will enable 3D printing of nano-dimensional features.”

Continue reading Printing a cartilage repair kit

The ageing brain can repair itself

Professor Perry Bartlett is putting people with dementia on treadmills.

Mapping the vast networks of the brain; 10,000 million neurons, each with 10,000 connections. Credit: Queensland Brain Institute
Mapping the vast networks of the brain; 10,000 million neurons, each with 10,000 connections. Credit: Queensland Brain Institute

He has already reversed dementia and recovered spatial memories in mice through exercise. And in 2016 he and colleagues at The University of Queensland will begin clinical trials to see if exercise will have the same impact in people with dementia. Then he’ll look at depression.

Underpinning these projects is the idea that the brain is constantly changing; and that learning, memory, mood, and many other brain functions are in part regulated by the production of new neurons.

Continue reading The ageing brain can repair itself

Making blood on demand

‘Buddy’ cells that trigger blood stem cells to fully-develop have been discovered by a team of Australian scientists. The finding, in zebrafish, may hold the key to creating blood on demand in the lab.

Everyday medical procedures can require litres of donated blood; and blood stem cells – which can turn into any one of the different types of blood cell – are often used in treatments for leukaemia, lymphoma, and other blood cancers.

Continue reading Making blood on demand

Changing lives: Australia–Japan science links

To read about Japan-Australia innovation collaborations—including searching for new malaria drugs, giant robot trucks carrying ore, and chewing gum that reverses tooth decay—click here.

Japanese science changing Australia

The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD. Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.

Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow
Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow

Fundamental science discoveries are bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps—lasting a lifetime and using a fraction of the energy.

In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using induced pluripotent stem cells to develop stem cell medicines.

Continue reading Changing lives: Australia–Japan science links

Changing lives: Australia–Japan science links

Japanese science changing Australia

The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD.

Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow
Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow

Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.

Fundamental science discoveries are now bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps— lasting a lifetime and using a fraction of the energy.

In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using his induced pluripotent stem cells to develop stem cell medicine.

Australian science changing Japan

It’s not a one way trade. Japanese lives are being improved by Australian inventions such as the bionic ear, gum that repairs tooth decay, sleep disorder treatments, lithium to treat bipolar disorder, aircraft black boxes, and anti-flu drugs, which are all in daily use in Japan.

And when you connect to a fast and reliable wi-fi network you can thank Australian astronomers who were searching for black holes and created tools for cleaning up radio waves.

Collaborating for the future

Today there are hundreds of thriving Australia–Japan research collaborations, many of which will have a profound impact on our lives in the years ahead.

Over the past five years, Japan has consistently placed within the 10 countries that have the highest number of collaborations with Australian researchers on Australian Research Council–funded projects. The ARC reports that the most popular disciplines for collaboration with Japan are: material engineering; biochemistry and cell biology; atomic, molecular, nuclear, particle and plasma physics; astronomical and space sciences and plant biology.

Other collaborations

Seeing every cell in a whole adult brain
Scientists from RIKEN, the University of Tokyo, JAST, and the Queensland University of Technology have developed CUBIC—a technique for rapidly imaging the brain. They believe it will be scalable to whole bodies.

Biomedical applications for ‘magic crystals’
CSIRO and Osaka Prefecture University are developing biomedical applications for the massively absorbent metal–organic framework crystals developed by CSIRO.

How our phones track us
Billions of us now have phones that tell us and others where we are and what’s around us. A team from RMIT, Intel, Fudan University and Keio University is exploring the cross-cultural and intergenerational study of this phenomenon, and the implications for privacy, in three key sites: Tokyo, Shanghai and Melbourne.

For more information: Science in Public, www.scienceinpublic.com.au/stories/japan