Tag Archives: iPS cells

Changing lives: Australia–Japan science links

To read about Japan-Australia innovation collaborations—including searching for new malaria drugs, giant robot trucks carrying ore, and chewing gum that reverses tooth decay—click here.

Japanese science changing Australia

The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD. Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.

Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow
Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow

Fundamental science discoveries are bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps—lasting a lifetime and using a fraction of the energy.

In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using induced pluripotent stem cells to develop stem cell medicines.

Continue reading Changing lives: Australia–Japan science links

Changing lives: Australia–Japan science links

Japanese science changing Australia

The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD.

Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow
Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow

Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.

Fundamental science discoveries are now bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps— lasting a lifetime and using a fraction of the energy.

In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using his induced pluripotent stem cells to develop stem cell medicine.

Australian science changing Japan

It’s not a one way trade. Japanese lives are being improved by Australian inventions such as the bionic ear, gum that repairs tooth decay, sleep disorder treatments, lithium to treat bipolar disorder, aircraft black boxes, and anti-flu drugs, which are all in daily use in Japan.

And when you connect to a fast and reliable wi-fi network you can thank Australian astronomers who were searching for black holes and created tools for cleaning up radio waves.

Collaborating for the future

Today there are hundreds of thriving Australia–Japan research collaborations, many of which will have a profound impact on our lives in the years ahead.

Over the past five years, Japan has consistently placed within the 10 countries that have the highest number of collaborations with Australian researchers on Australian Research Council–funded projects. The ARC reports that the most popular disciplines for collaboration with Japan are: material engineering; biochemistry and cell biology; atomic, molecular, nuclear, particle and plasma physics; astronomical and space sciences and plant biology.

Other collaborations

Seeing every cell in a whole adult brain
Scientists from RIKEN, the University of Tokyo, JAST, and the Queensland University of Technology have developed CUBIC—a technique for rapidly imaging the brain. They believe it will be scalable to whole bodies.

Biomedical applications for ‘magic crystals’
CSIRO and Osaka Prefecture University are developing biomedical applications for the massively absorbent metal–organic framework crystals developed by CSIRO.

How our phones track us
Billions of us now have phones that tell us and others where we are and what’s around us. A team from RMIT, Intel, Fudan University and Keio University is exploring the cross-cultural and intergenerational study of this phenomenon, and the implications for privacy, in three key sites: Tokyo, Shanghai and Melbourne.

For more information: Science in Public, www.scienceinpublic.com.au/stories/japan

Stem cell memory to help tailor regenerative medicine

A Melbourne scientist is harvesting the memory found in reprogrammed adult cells to develop cell therapy techniques that have the potential to cure a number of diseases.

iPS cells expressing a green fluorescent protein indicating the reactivation of the Oct4 pluripotent gene. Credit: Jose Polo

Jose Polo, of Monash University, has found that induced pluripotent stem (iPS) cells don’t lose all their memory after reprogramming, flagging the possibility that a better understanding of these stem cells will aid regenerative medicine.

“Basically an iPS cell derived from muscle is more likely to reprogram back into muscle cells, while iPS cells derived from skin will generate skin cells,” says Jose. “And this could influence what type of iPS cell you might choose to generate a specific cell type.”

Continue reading Stem cell memory to help tailor regenerative medicine