Tag Archives: Vic

Measuring the Universe from start to finish

THE HUBBLE SPACE TELESCOPE CAN BE USED TO TAKE MEASUREMENTS THAT WILL HELP ANSWER SOME OF THE BIGGEST QUESTIONS ABOUT THE UNIVERSE. CREDIT: NASA/STSCI.
THE HUBBLE SPACE TELESCOPE CAN BE USED TO TAKE MEASUREMENTS THAT WILL HELP ANSWER SOME OF THE BIGGEST QUESTIONS ABOUT THE UNIVERSE. CREDIT: NASA/STSCI.

Scientific puzzles don’t come much bigger than these. How old is the Universe? How big is it? And what is its ultimate fate?

A single number, Hubble’s constant, is the key that can unlock all of those questions, but it’s a number that has proved notoriously hard to accurately measure. Hubble’s constant is the rate at which the Universe is expanding. The first team to accurately make that measurement was co-led by Jeremy Mould, now a professor at Swinburne University of Technology and professorial fellow at the University of Melbourne. Continue reading Measuring the Universe from start to finish

Galaxies point the way to dark energy

WiggleZ will hunt for dark energy in the faint patterns of 293,000 distant galaxies. Credit: NASA / ESA / HUDF09 Team

A project to produce more than double the number of galaxy distance measurements than all other previous surveys, could lead to an explanation of one of nature’s biggest mysteries—whether dark energy, an invisible force that opposes gravity, has remained constant or changed since the beginning of time.

Continue reading Galaxies point the way to dark energy

Starving cancer and other stories

Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]

Dirt solves murder mysteries

Australian detectives can now use a pinch of dirt or a speck of dust to help solve crimes, thanks to techniques developed at the Australian synchrotron.

PHOTO: A SPECK OF DUST OR A PINCH OF DIRT IS NOW ENOUGH TO SOLVE A MURDER. CREDIT: MITARAT
Soil composition is as unique as a fingerprint so scientists can analyse dirt samples and, in theory, match their results to specific regions of the Earth’s surface. Until recently, large sample sizes were needed to make this work.
Continue reading Dirt solves murder mysteries

Spot the nutrients

Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.

South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.

One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.

Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.

The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.

One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.

The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.

Photo: Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Credit: Enzo Lombi

Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au

Pain relief from the sea

For the one in five Australians of working age suffering from serious chronic pain, the options for relief are strictly limited. There’s morphine and . . . well, there’s morphine. But now one of the most powerful toxins in the natural world—the venom of marine cone snails—offers hope of a future free of pain and addiction, say researchers at RMIT University.

PHOTO: CONE SNAILS MAY OFFER PAIN RELIEF. CREDIT: ISLAND EFFECTS
PHOTO: CONE SNAILS MAY OFFER PAIN RELIEF. CREDIT: ISLAND EFFECTS

“The big problems with morphine are addictiveness and the fact that people develop a tolerance to it,” says Professor David Adams, director of the RMIT Health Innovations Research Institute. “With the painkillers derived from cone snail venom, we don’t have those problems. People don’t develop tolerance, and they don’t get hooked.

Continue reading Pain relief from the sea

Silicon solves helicopter corrosion

An inexpensive, environmentally friendly alternative to a toxic coating currently used in Australian naval helicopters has been developed at Monash University in collaboration with CAST Cooperative Research Centre in Melbourne.

A non-toxic coating will reduce environmental and maintenance costs in Seahawk helicopters. Credit: US Navy
A non-toxic coating will reduce environmental and maintenance costs in Seahawk helicopters. Credit: US Navy

The magnesium alloy used to house the gearbox of Royal Australian Navy SeaHawk helicopters is prone to severe corrosion in marine environments, costing millions of dollars in maintenance every year. To protect the alloy from corrosion, it is covered with a chrome-based coating that is toxic to humans and the environment.

Continue reading Silicon solves helicopter corrosion

Crashing helicopters for safety

Mathew Joosten crashes several helicopters a day—without any deaths or injury. He uses computer simulation.

Crashing helicopters can now be done from the safety of the keyboard. Credit: ACSCRC
Crashing helicopters can now be done from the safety of the keyboard. Credit: ACSCRC

A research student of the Cooperative Research Centre for Advanced Composite Structures, Mr Joosten has designed ‘virtual crash test’ software to help accelerate the development of safety systems.

Continue reading Crashing helicopters for safety

Milk could soothe the savage gum

Melbourne dental health researchers have discovered a painless, low-cost treatment which may prevent gum disease.

Milk could soothe the savage gum
A peptide found in milk may help prevent gum disease and protect teeth. Credit: Istock photos

And the key ingredients—protein fragments known as peptides—come from cows’ milk.

The link between the peptides and gum disease was forged at the Melbourne Dental School node of the Oral Health Cooperative Research Centre by Dr Elena Toh. “This could provide a cheap and simple way to help prevent gum disease,” she says. “And because the peptides are derived from milk, there should be no toxicity issues.”
Continue reading Milk could soothe the savage gum

Parasites betrayed by their genome

Photo: The barber’s pole worm causes deaths and massive production losses in the sheep industry. Credit:IstockphotoMelbourne veterinary researchers are using genomic techniques and bioinformatics to lead them to new specific candidate drugs for the treatment of a devastating parasite known as barber’s pole worm, which causes anaemia, deaths and massive production losses in the sheep industry.

Using the latest gene sequencing technology and the supercomputers of the Victorian Life Sciences Computation Initiative, Prof Robin Gasser’s research group from the University of Melbourne’s Veterinary School have been able to compare barber’s pole worm’s DNA and RNA with that of other organisms in order to track down genes essential to the worm’s growth, development, reproduction and survival. Continue reading Parasites betrayed by their genome