Tag Archives: materials

Changing the world one molecule at a time

Many plastics and polymers—including paints, glues and lubricants—will be transformed in the coming years by the work of Australian chemists, Professors David Solomon and Ezio Rizzardo.

David Solomon (left) and Ezio Rizzardo (right) with Prime Minister Julia Gillard. Credit: Prime Minister’s Science Prizes/Irene Dowdy

Their work is integral to more than 500 patents and their techniques are used in the labs and factories of DuPont, L’Oréal, IBM, 3M, Dulux and more than 60 other companies.

Eventually, the pair’s chemical theories and processes will influence hundreds of products.

Continue reading Changing the world one molecule at a time

Spray-on solar cells

Imagine a power station that’s literally sprayed onto your roof —and could match the colour of your tiles.

GERRY WILSON IS DEVELOPING SPRAY-ON SOLAR CELLS. CREDIT: ISTOCKPHOTO

Thin film solar cells are thinner, cheaper and more versatile than the traditional silicon solar panels. Spray-on solar is a next step in the evolution of on-site power generation.

“These cells can be made with semiconductor dye materials, so you can match them to any colour or pattern you like—they’ll just convert that part of the solar spectrum into electricity. In the future we could have billboards that act as solar panels,” says Dr Gerry Wilson of CSIRO’s flexible electronics team.

Continue reading Spray-on solar cells

Star-shaped polymers boost engine performance

New lubricants containing star-shaped polymers have hit the market, thanks to Australian polymer technology. Lubrizol Corporation has launched the first commercial products developed using CSIRO’s Reversible Addition Fragmentation chain Transfer (RAFT) polymer synthesis process.

Asteric ™ Viscosity Modifiers are tailor-made star-shaped polymers made possible by RAFT Credit: Lubrizol
Asteric ™ Viscosity Modifiers are tailor-made star-shaped polymers made possible by RAFT Credit: Lubrizol

CSIRO chemist Dr Ezio Rizzardo says the RAFT process allows much greater flexibility and potential for polymer synthesis, compared with conventional methods. “Conventional polymerisation is a relatively simple process with two ingredients: large amounts of monomer and a small amount of an initiating agent. You apply heat; a chain reaction starts and runs to completion, making polymer chains that can have widely varying lengths.”
Continue reading Star-shaped polymers boost engine performance

Silicon solves helicopter corrosion

An inexpensive, environmentally friendly alternative to a toxic coating currently used in Australian naval helicopters has been developed at Monash University in collaboration with CAST Cooperative Research Centre in Melbourne.

A non-toxic coating will reduce environmental and maintenance costs in Seahawk helicopters. Credit: US Navy
A non-toxic coating will reduce environmental and maintenance costs in Seahawk helicopters. Credit: US Navy

The magnesium alloy used to house the gearbox of Royal Australian Navy SeaHawk helicopters is prone to severe corrosion in marine environments, costing millions of dollars in maintenance every year. To protect the alloy from corrosion, it is covered with a chrome-based coating that is toxic to humans and the environment.

Continue reading Silicon solves helicopter corrosion

Women at scientific forefront awarded new VESKI Innovation Fellowships

VESKI – Victorian Endowment for Science, Knowledge and Innovation – has awarded its latest Innovative Fellowships to two outstanding woman scientists.

VESKI was established with a $10 million endowment from the Victorian Government to entice talented expatriates home.

Continue reading Women at scientific forefront awarded new VESKI Innovation Fellowships

The lighting revolution has only just begun

Zinc oxide crystal. Credit: Matthew Foley, UTS.
Zinc oxide crystal. Credit: Matthew Foley, UTS.

LED lighting is sweeping the world. It’s energy efficient, long lasting, and could save users billions of dollars worldwide and dramatically reduce carbon emissions. But it’s still a young technology. Much more efficient lights are on the way.

Continue reading The lighting revolution has only just begun

Australia’s place in the nanotechnology race

CSIRO_CliveD_GloveboxCSIRO researchers are applying nanotechnology to drug delivery, medical body imaging, nerve repair, smart textiles and clothing, medical devices, plastic solar cells (see From plastic money to plastic electricity) and much more.

“Nanotechnology is not an industry—it is an enabling technology,” says Clive Davenport, leader of CSIRO’s Future Manufacturing Flagship.

Continue reading Australia’s place in the nanotechnology race

Supercomputer to test nanoparticles before we make them

Playing with virtual gold nanoparticles. Credit: Amanda Barnard, CSIRO
Playing with virtual gold nanoparticles. Credit: Amanda Barnard, CSIRO

Every new technology brings opportunities and threats. Nanotechnology is no exception. It has the potential to create new materials that will dramatically improve drug delivery, medical diagnostics, clean and efficient energy, computing and more. But nanoparticles could also have significant health and environmental impacts.

Continue reading Supercomputer to test nanoparticles before we make them