The molecular process behind a killer hole-punch has been revealed through a unique combination of technology—which Monash University call their ‘21st Century microscope’.
Continue reading Immune trick revealed by 21st Century microscope
Continue reading Immune trick revealed by 21st Century microscope
Each offers an application for Matthew Hill’s crystals. He has demonstrated that the space inside metalorganic frameworks (MOFs)—the world’s most porous materials—can be used as efficient and long-lasting filters.
By choosing different combinations of metals and plastics, Matthew’s CSIRO team can make a wide range of customised crystals. Then, using antimatter and synchrotron light, they map the internal pores, determine what each crystal can do and explore potential applications.
The role of Helicobacter in causing gastric ulcers was originally discovered by Australian Nobel Laureates Barry Marshall and Robin Warren.
The recent work by James and his team was performed using the Australian Synchrotron and showed how the Helicobacter pylori protein SabA interacts with sugars present on the cells that line the stomach.
In 2013, the LHC will shut down for enhancements that will enable it to generate a reliable supply of Higgs-like particles.
Continue reading Australian Synchrotron helps its big brother in Geneva
A glimpse of a rare self-portrait by one of Australia’s most highly regarded artists has emerged from what appeared to be a blank canvas—thanks to researchers at the Australian Synchrotron.
Australian Synchrotron scientist Dr Qinfen Gu is investigating a new class of hydrogen storage materials being developed by scientists at the University of Wollongong and their international collaborators.Qinfen is using the powerful X-rays of the synchrotron to observe and analyse the structure of these materials. Continue reading New light on storing energy
Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]
Soil composition is as unique as a fingerprint so scientists can analyse dirt samples and, in theory, match their results to specific regions of the Earth’s surface. Until recently, large sample sizes were needed to make this work.
Continue reading Dirt solves murder mysteries
South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.
One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.
Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.
The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.
One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.
The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.
Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au
These are just some of the wide-ranging possibilities arising from research which has revealed the structure and function of the protein perforin, a front-line weapon in the body’s fight against rogue cells.
A pivotal role was played by 2006 Science Minister’s Life Scientist of the Year, molecular biologist Prof James Whisstock and his research team at Monash University. It was research fellow Dr Ruby Law who finally worked out how to grow crystals of perforin. And the team was then able to collaborate with Dr Tom Caradoc-Davies of the micro-crystallography beamline at the nearby Australian Synchrotron to reveal its complete molecular structure.
Continue reading How a molecular assassin operates