Tag Archives: iron

Spot the nutrients

Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.

South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.

One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.

Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.

The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.

One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.

The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.

Photo: Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Credit: Enzo Lombi

Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au

Building a better banana

The Bill and Melinda Gates Foundation are supporting the efforts of Queensland University of Technology scientists to design a better banana.

James Dale and a better banana palm for Africa. Credit: QUT
James Dale and a better banana palm for Africa. Credit: QUT

The researchers have already added provitamin A—a compound the body converts to Vitamin A—to the East African Highland banana. Now they are working to boost the iron content of the cooking banana that is a staple food of Uganda.

Led by Prof James Dale, director of University’s Centre for Tropical Crops and Biocommodities, the researchers are working with the Ugandan National Agricultural Research Organisation to modify the bananas genetically to raise their micronutrient levels, and then develop disease-resistant strains to distribute to East African farmers. The research is being funded by a $10-million grant from Bill and Melinda Gates Foundation’s Grand Challenges in Global Health Program.

James and his team developed efficient technology for raising nutrient levels in Cavendish bananas through to field trials in Queensland and then transferred it to Uganda. Ugandan scientists are now using these methods to modify East African Highland bananas genetically to increase their biosynthesis of provitamin A and their accumulation of iron.

Part of the project includes ensuring Ugandans will accept the new fruit, which has deep yellow flesh, thanks to the addition of the Vitamin A precursor, beta-carotene.