A promising treatment for Duchenne muscular dystrophy (DMD) could open the way to therapies for cystic fibrosis, spinal muscular atrophy and other disorders.
Continue reading Bypassing genetic ‘spelling errors’ in muscular dystrophy
Continue reading Bypassing genetic ‘spelling errors’ in muscular dystrophy
Dr Elena Tucker has brought peace of mind to families affected by rare energy disorders. She’s found genes responsible for some of these diseases.
Now, with the support of her 2014 L’Oréal For Women in Science Fellowship, she will look at hundreds of individual genomes to determine the causes of sex-determination disorders.
For the thousands of families affected by these rare disorders Elena’s work provides an understanding of the causes and opens a path to management and to potential treatments one day. And the techniques she’s developing underpin the broader development of personalised medicine.
For her PhD, Elena used high-throughput DNA sequencing to investigate the genetics of mitochondrial disease. Mitochondria are the membranous structures in the cell where food is converted into the energy that powers our bodies. Anything that disables them, such as the mutation of a gene, robs the body of the energy it needs to function. This can lead to symptoms such as seizures, muscle weakness, developmental delays, liver dysfunction, heart failure or blindness.
Elena discovered four genes, and helped in finding an additional four, within which mutations have a direct link to such conditions. This has accounted for a significant proportion of new genetic diagnoses of mitochondrial disease.
Prof Ingrid Scheffer, a paediatric neurologist at the Florey Neuroscience Institutes and the University of Melbourne, has spent the last 20 years looking at the genetics of epilepsy, particularly in children.
We now know that genes play a large role and that’s opened the way to better diagnosis, treatment, counselling, and potential cures.
In particular, Ingrid’s team and her collaborators at the University of South Australia have discovered that one kind of inherited infant epilepsy is due to a single letter change in the genetic code.
Continue reading Understanding the genetic contribution to epilepsy
Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]
South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.
One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.
Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.
The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.
One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.
The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.
Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au
Using the latest gene sequencing technology and the supercomputers of the Victorian Life Sciences Computation Initiative, Prof Robin Gasser’s research group from the University of Melbourne’s Veterinary School have been able to compare barber’s pole worm’s DNA and RNA with that of other organisms in order to track down genes essential to the worm’s growth, development, reproduction and survival. Continue reading Parasites betrayed by their genome
There’s a molecular clock ticking away inside them that triggers their death. He’s also discovered a gene critical for the production of blood stem cells in our bone marrow that happens to be responsible for a range of cancers.
These major discoveries earned Ben the 2010 Science Minister’s Prize for Life Scientist of the Year. Now he is trying to use them to extend the life of blood bank products, and get to the heart of some of the big questions in cancer.
Continue reading The life and death of blood cells
The DNA is inserted into the cells of the cornea after it has been harvested. Then, following implantation, it produces proteins that help overcome immunological rejection.
This is one of many strands of research aimed at increasing the success rates of corneal transplants and other eye disease treatments undertaken by Prof Keryn Williams at Flinders University.
Continue reading Helping eyes to help themselves
The researchers have already added provitamin A—a compound the body converts to Vitamin A—to the East African Highland banana. Now they are working to boost the iron content of the cooking banana that is a staple food of Uganda.
Led by Prof James Dale, director of University’s Centre for Tropical Crops and Biocommodities, the researchers are working with the Ugandan National Agricultural Research Organisation to modify the bananas genetically to raise their micronutrient levels, and then develop disease-resistant strains to distribute to East African farmers. The research is being funded by a $10-million grant from Bill and Melinda Gates Foundation’s Grand Challenges in Global Health Program.
James and his team developed efficient technology for raising nutrient levels in Cavendish bananas through to field trials in Queensland and then transferred it to Uganda. Ugandan scientists are now using these methods to modify East African Highland bananas genetically to increase their biosynthesis of provitamin A and their accumulation of iron.
Part of the project includes ensuring Ugandans will accept the new fruit, which has deep yellow flesh, thanks to the addition of the Vitamin A precursor, beta-carotene.