Manufacturers are looking for ways to make their factories more sustainable, but before whacking a solar panel on the roof, they’ve got to plan carefully.
University of New South Wales researcher Assoc Prof Sami Kara says production lines need a steady supply of electricity, and if the sun goes behind a cloud, businesses get hit with penalty rates for suddenly drawing more energy from the grid.
Dr Tracy Ainsworth’s research is changing our understanding of the tiny coral animals that built Australia’s iconic Great Barrier Reef. Tracy and her colleagues at James Cook University in Townsville have found that the process of coral bleaching is a far more complex than previously thought, and begins at temperatures lower than previously considered. And she’s done so by applying skills in modern cell biology which she picked up working in neuroscience laboratories.
Her achievements won her a $20,000 L’Oréal Australia For Women in Science Fellowship in 2011, which she is using to study the low light, deep water reefs that underlie tropical surface reefs at depths of 100 metres or more. Continue reading The complex life of coral→
Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]
Leading grain farmers are guiding climate researchers as part of Australia’s Climate Champion initiative.
They hope the results will help farmers to adapt to Australia’s increasingly challenging and variable climate.
Scientists supported by the Managing Climate Variability program asked the farmers about what they needed to know about climate in their areas—what forecasts and predictions would be most helpful and how they should be presented. Continue reading Australian farmers bring climate research to the paddock→
Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.
Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.
High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”
Making cement is the third largest source of carbon emissions in the world after the burning of fossil fuels and deforestation—but the Australian roads of the future could be paved with cement that is made in a process that generates less than half the carbon emissions of traditional methods.
Each year, the world produces about 12 billion tonnes of concrete and about 1.6 billion tonnes of its key ingredient, Portland cement, which is generated by breaking calcium carbonate into carbon dioxide and calcium oxide.
This produces some 2 billion tons of carbon dioxide—so the Geopolymer and Mineral Processing Group (GMPG) at the University of Melbourne, now led by Dr John Provis, went looking for a lower carbon way of making cement.
They have now developed binders and concretes based on a low-CO2 aluminosilicate compounds called geopolymers.
Thermometer-based climate records started in 1850, so scientists have gone “back to nature” for sources of long-term climatic information to help them better understand climate change and rising sea levels.
Smoke-belching coal-fired power stations and factories and fossil fuel-guzzling motor vehicles may be seen as the big villains of the global climate change debate, but they aren’t the only ones contributing to the greenhouse effect.
Australia’s hundreds of millions of cattle, sheep, pigs and other agricultural animals – not to mention our native fauna – also release significant amounts of methane and other gases into the atmosphere.
Industry has increased its efficiency from what it was in the past, to the point where its current ecological footprint is a fraction of what it used to be.
Now imagine an industry sector that produces zero waste, is carbon neutral and husbands the earth’s resource endowment for future generations.