More than 1.2 million Australians have an autoimmune disease. But any two people may experience it very differently, even if their disease has the same name.
Unlike infectious diseases, autoimmune diseases are not passed from person to person. They are our bodies fighting themselves, making every person’s disease unique.
“A lot of clinical trials fail as they treat all patients with a certain ‘disease’ as one big group,” says Professor Carola Vinuesa, from the National Health and Medical Research Council Centre for Research Excellence in Personalised Immunology at The Australian National University.
Blood vessels act as tissue engineers during facial development, guiding the formation of jaw structures in mice, according to research from South Australia.
Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]
Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.
Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.
High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”
VESKI’s main initiative – to return successful Australian expatriates with outstanding skills in science, technology and design – is paying off with some inspiring work.
In 2004, VESKI’s – Victorian Endowment for Science, Knowledge and Innovation – inaugural Fellow Professor Andrew Holmes returned from Cambridge University to work in a new $100 million Bio21 Molecular Biology and Biotechnology Institute. One of the most important research areas to emerge since has been the development of cheap plastic solar cells.