Planetary changes

Discovering our changing planet: a perfect France–Australia partnership

Professor Kurt Lambeck is one of Australia’s most eminent scientists—a geophysicist who revealed how the Earth changes shape and how these changes are tied to sea levels, the movement of continents, and the orbits of satellites. Vital to his career have been French collaborations that now span almost half a century.

Continue reading Planetary changes

Water for life

Changing how communities think about water in Oceania

Water is a fundamental necessity of life, and managing water—who uses it and how—is a key challenge in developing countries.

Decisions about how to use scarce freshwater for drinking, agriculture, industry, and the environment can lead to conflict. In Oceania, this is often complicated by questions of who should make the decisions—governments, landholders, industry or others.

Continue reading Water for life

Hypersonic travel

Brussels to Sydney in less than three hours

A passenger jet could one day fly halfway around the world in just a few hours. That’s the goal of the HEXAFLY project (High-speed Experimental FLY): going beyond the supersonic realm pioneered by the now-defunct Concorde to reach hypersonic speeds more than five times as fast as sound.

Led by the European Space Agency, the project has now brought on international collaborators to prepare for an early stage test flight planned for 2020.

Continue reading Hypersonic travel

The shape of a perfect storm: saving lives by predicting firestorms

Correction: an earlier version stated the tool is being formally trialed by the NSW Rural Fire Service. It is currently in use, but formal trials ended in 2016.

Firestorms are a nightmare for emergency services and anyone in their path. They occur when a bushfire meets a ‘perfect storm’ of environmental conditions and creates a thunderstorm.

Dr Rachel Badlan and Associate Professor Jason Sharples are part of a team of experts from UNSW Canberra and ACT Emergency Services that has found the shape of a fire is an important factor in whether it will turn into a firestorm.

Fires that form expansive areas of active flame, rather than spreading as a relatively thin fire-front, are more likely to produce higher smoke plumes and turn into firestorms, the researchers found.

This finding is being used to underpin further development of a predictive model for firestorms. The model was trialed in the 2015 and 2016 fire seasons by the ACT Emergency Services Agency and the NSW Rural Fire Service, and now forms part of the national dialogue around extreme bushfire development.  

Continue reading The shape of a perfect storm: saving lives by predicting firestorms

From the ocean floor to batteries—partners in energy

Heading into deep water

Perth researchers help Chevron keep oil and gas flowing smoothly

Out in the Gulf of Mexico Chevron are operating a $7.5 billion platform that’s recovering oil and gas from two-kilometre-deep ocean.

It’s the largest and deepest operation in the Gulf, with over 146km of pipeline bringing oil and gas to refineries.

But pipelines operating at extreme depths in cold water and crushing pressure are prone to blockage. University of Western Australia researchers are helping Chevron keep oil and gas flowing through deep-water pipes.

Continue reading From the ocean floor to batteries—partners in energy

Cars, planes…partners in advanced manufacturing

Australian and American researchers and businesses are partnering to bring new manufacturing technologies to market

Paint fit for a Dreamliner

Next time you board a new Boeing Dreamliner, take note of its Australian paint.

Developed by researchers at CSIRO, Australia’s national science agency, ‘Paintbond’ has now been adopted across the entire Boeing aircraft fleet, and more than 1,000 aircraft have been re-coated using the technology so far.

Why is it better? The new spray-on topcoat paint technology saves time, reduces the impact on the environment, and is safer to use.

Continue reading Cars, planes…partners in advanced manufacturing

Tracking space junk

Algorithms normally used to track aircraft, ships and other vehicles are being used to monitor space junk and predict where it will go.

Currently the US Department of Defense tracks around 17,300 objects the size of a softball or larger, orbiting around the Earth at speeds of up to seven kilometres per second.

They can cause serious damage if they collide with something else. Last year a tiny paint fleck caused a crack in a window of the International Space Station.

Continue reading Tracking space junk