Australian Science Prizes 2016

Clunies Ross Awards

Dr Elaine Saunders has made premium hearing aids more affordable and easier to use. She and her team have built on Australia’s bionic ear technologies to create a system where you can: test your hearing online; buy your hearing aid online and receive it set up ready for you; and adjust the hearing aid with your smartphone while you’re at the pub, dancing, or watching TV.

Credit: Blamey Saunders

Continue reading Australian Science Prizes 2016

Using algorithms to predict flu outbreaks

A computer algorithm originally developed to model the West African Ebola pandemic in 2014 is being used to predict flu outbreaks in Australia months in advance, and could help in the fight against bioterrorism.

Developed by Australian Defence scientists, the tool was originally used to forecast the number of people infected with Ebola up to two months in advance.

Continue reading Using algorithms to predict flu outbreaks

Hearing voices is normal; lenses a thousandth of a hair-width; harnessing the Internet of Things; and more—Swinburne University of Technology

Researchers at Swinburne University of Technology are working on:

Continue reading Hearing voices is normal; lenses a thousandth of a hair-width; harnessing the Internet of Things; and more—Swinburne University of Technology

Eyes, hearts, bionic spines—partners in new health technologies

Across America lives have been improved by Australian inventions—the cervical cancer vaccine, the bionic eye, gum that repairs tooth decay. What’s next?

Extended wear contact lenses for healthier eyes

Some 30 million Americans use contact lenses. Today they can wear a single pair for up to 30 consecutive days and nights, safely and comfortably thanks to the work of CIBA Vision and CSIRO, Australia’s national science agency.

Contact lenses were once rigid and had to be taken out every night. In 1991, a team of researchers from CSIRO, the University of New South Wales, and the Vision Cooperative Research Centre joined forces with CIBA Vision in the US, and Novartis in Switzerland, to create a better contact lens.

Continue reading Eyes, hearts, bionic spines—partners in new health technologies

Protecting our crops—partners in food security

Australia and America are farming nations

The science underpinning modern farming has enabled our farmers to become more efficient, and more profitable.

Take grain for example. American farmers grow over 440 million tonnes of grain each year. Australia produces about 40 million tonnes. Together that’s about one-sixth of global grain production. Good science has contributed to a tripling in grain production over the past half century.

Both nations export to the world. But whenever we store and transport grain the bugs bite. The latest collaborative research between our two nations is changing that.

Continue reading Protecting our crops—partners in food security

Protecting phones, robots and governments—partners in cybersecurity

Your smartphone’s Wi-Fi connections are fast and reliable thanks to the work of Australian astronomers in the 1990s.

Today, your phone is also being protected from cyberattacks by Australian software that works within the kernel of the phone’s operating system to protect it from hacking and software faults. The kernel is the most fundamental part of an operating system. It acts between the hardware and the applications.

Now Australian researchers are working to secure America’s growing fleets of autonomous machines, with ‘microkernel’ software known as seL4.

The new software is built on the work of researchers at the University of New South Wales and National ICT Australia (now CSIRO’s Data61 Group).

Continue reading Protecting phones, robots and governments—partners in cybersecurity

Fishing for food security

Local fishermen in Indonesia are catching less fish. Whatever the reason, it is a significant problem for those who live on small islands in particular, as fish make up about 90 per cent of the protein they eat.

A team of Indonesian and Australian social scientists is looking at how communities adapt to these changes.

Initially, in a pilot project study financed by the Australia Indonesia Centre, the researchers are examining whether there is a link between fishing productivity and feelings of food insecurity in the small islands off Kai Kecil, and if so, whether a weakening of local management of fish populations and a rise in intercommunity conflicts over fish resources play a role.

Continue reading Fishing for food security

Feeding the world, and asking where the wind went

Life on land depends on plants. And every plant balances opening its pores to let in carbon dioxide for photosynthesis; and closing its pores to retain water.

Graham Farquhar’s work has transformed our understanding of photosynthesis.

His models of plant biophysics have been used to understand cells, whole plants, whole forests, and to create new water-efficient wheat varieties.

Continue reading Feeding the world, and asking where the wind went

Sending quantum information around the world

Sending quantum messages over long distances will be challenging. The signal will have to be amplified every few hundred kilometres, but conventional optical amplification would destroy the quantum message.

In a quantum information system, if you measure the light, you will destroy the information encoded on it. You need to store the light itself.

“We have to catch and store the light, but we’re not allowed to look at it to see what information it contains. If the system is working, the light will be exactly the same when we let it out again. We do this by absorbing the light into a cloud of atoms,” says Dr Ben Buchler.

Continue reading Sending quantum information around the world