Starving cancer and other stories

Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]

Spot the nutrients

Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.

South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.

One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.

Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.

The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.

One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.

The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.

Photo: Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Credit: Enzo Lombi

Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au

Yeast to make jet fuels

Yeast to make jet fuels
Dr Claudia Vickers is leading a team looking at modifying baker’s yeast to make aviation fuel. Credit: AIBN.

Baker’s yeast could soon be turning sugar cane into jet fuel. Dr Claudia Vickers from the Australian Institute for Bioengineering and Nanotechnology (AIBN) at the University of Queensland leads a team studying strains which already produce ethanol, industrial chemicals and pharmaceuticals.

The researchers want to use the yeast strains S. cerevisiae to make isoprenoids, chemicals traditionally used to make pharmaceuticals and food additives, but which can also serve as fuel.

The idea is to give the yeast new functions, so they can consume sucrose from cane sugar and produce isoprenoid products, which can be used to replace or supplement traditional jet fuel, without modifying existing aircraft engines or infrastructure.

Claudia’s lab was originally looking at the gut bacteria E. coli, which could also be used to produce isoprenoids, but the yeast is now looking more promising.

Other research groups at The University of Queensland and James Cook University are looking to develop aviation fuel from algae and the oilseed tree Pongamia, both of which can be grown without competing with traditional food crops for land or water.

The University’s sustainable aviation fuel initiative has attracted several backers including Boeing, Virgin Australia, Mackay Sugar, Brisbane-based IOR Energy, and the US-based green energy company Amyris. It is funded by the Queensland State Government.

Photo: Dr Claudia Vickers is leading a team looking at modifying baker’s yeast to make aviation fuel.
Credit: AIBN

Australian Institute for Bioengineering & Nanotechnology, UQ, Claudia Vickers, Tel: +61 7 334 63158, c.vickers@uq.edu.au, www.aibn.uq.edu.au

Pain relief from the sea

For the one in five Australians of working age suffering from serious chronic pain, the options for relief are strictly limited. There’s morphine and . . . well, there’s morphine. But now one of the most powerful toxins in the natural world—the venom of marine cone snails—offers hope of a future free of pain and addiction, say researchers at RMIT University.

PHOTO: CONE SNAILS MAY OFFER PAIN RELIEF. CREDIT: ISLAND EFFECTS
PHOTO: CONE SNAILS MAY OFFER PAIN RELIEF. CREDIT: ISLAND EFFECTS

“The big problems with morphine are addictiveness and the fact that people develop a tolerance to it,” says Professor David Adams, director of the RMIT Health Innovations Research Institute. “With the painkillers derived from cone snail venom, we don’t have those problems. People don’t develop tolerance, and they don’t get hooked.

Continue reading Pain relief from the sea

Silicon solves helicopter corrosion

An inexpensive, environmentally friendly alternative to a toxic coating currently used in Australian naval helicopters has been developed at Monash University in collaboration with CAST Cooperative Research Centre in Melbourne.

A non-toxic coating will reduce environmental and maintenance costs in Seahawk helicopters. Credit: US Navy
A non-toxic coating will reduce environmental and maintenance costs in Seahawk helicopters. Credit: US Navy

The magnesium alloy used to house the gearbox of Royal Australian Navy SeaHawk helicopters is prone to severe corrosion in marine environments, costing millions of dollars in maintenance every year. To protect the alloy from corrosion, it is covered with a chrome-based coating that is toxic to humans and the environment.

Continue reading Silicon solves helicopter corrosion

Milk could soothe the savage gum

Melbourne dental health researchers have discovered a painless, low-cost treatment which may prevent gum disease.

Milk could soothe the savage gum
A peptide found in milk may help prevent gum disease and protect teeth. Credit: Istock photos

And the key ingredients—protein fragments known as peptides—come from cows’ milk.

The link between the peptides and gum disease was forged at the Melbourne Dental School node of the Oral Health Cooperative Research Centre by Dr Elena Toh. “This could provide a cheap and simple way to help prevent gum disease,” she says. “And because the peptides are derived from milk, there should be no toxicity issues.”
Continue reading Milk could soothe the savage gum

Parasites betrayed by their genome

Photo: The barber’s pole worm causes deaths and massive production losses in the sheep industry. Credit:Istockphoto Melbourne veterinary researchers are using genomic techniques and bioinformatics to lead them to new specific candidate drugs for the treatment of a devastating parasite known as barber’s pole worm, which causes anaemia, deaths and massive production losses in the sheep industry.

Using the latest gene sequencing technology and the supercomputers of the Victorian Life Sciences Computation Initiative, Prof Robin Gasser’s research group from the University of Melbourne’s Veterinary School have been able to compare barber’s pole worm’s DNA and RNA with that of other organisms in order to track down genes essential to the worm’s growth, development, reproduction and survival. Continue reading Parasites betrayed by their genome

Curing cancer with radiation – safely

Prostate and other soft-tissue cancers are often treated with radioactive sources implanted or inserted into the body. But monitoring the dose is problematic.

Curing cancer with radiation – safely
Computer simulation of brachytherapy prostate treatment showing radioactive source trajectories through the pelvic region. Credit: Rick Franich
Medical physicists at Melbourne’s RMIT University are developing a technique to monitor the radiation dose more accurately.

In high dose rate brachytherapy, tumours are targeted by radioactive sources temporarily inserted into the body.

“Until now, it has not been possible to check at the time of delivery whether the doses received by the tumour and by surrounding healthy tissue matched the planned levels,” says Dr Rick Franich, Medical Radiation Physics group leader at the University’s Health Innovations Research Institute.
Continue reading Curing cancer with radiation – safely

How a molecular assassin operates

The secrets of a molecular assassin could lead to more effective treatments for cancer and viral diseases, better therapy for autoimmune conditions, and a deeper understanding of the body’s defences enabling the development of more tightly focused immunosuppressive drugs.

How a molecular assassin operates
In this simulation, the perforin molecule (blue) punches a hole through the cell membrane (beige) providing access for toxic enzymes (red). Credit: Mike Kuiper
These are just some of the wide-ranging possibilities arising from research which has revealed the structure and function of the protein perforin, a front-line weapon in the body’s fight against rogue cells.

A pivotal role was played by 2006 Science Minister’s Life Scientist of the Year, molecular biologist Prof James Whisstock and his research team at Monash University. It was research fellow Dr Ruby Law who finally worked out how to grow crystals of perforin. And the team was then able to collaborate with Dr Tom Caradoc-Davies of the micro-crystallography beamline at the nearby Australian Synchrotron to reveal its complete molecular structure.
Continue reading How a molecular assassin operates

Virtual management of the world’s oceans

New computer models are challenging the conventional wisdom in marine science.

Virtual management of the world’s oceans
Beth Fulton’s fisheries models are used all over the world. Credit: Istockphoto
These models have revealed for example that: large populations of jellyfish and squid indicate a marine ecosystem in trouble; not all fish populations increase when fishing is reduced—some species actually decline; and, sharks and tuna can use jellyfish as junk food to see them through lean periods.

The models were developed by the 2007 Science Minister’s Life Scientist of the Year, Dr Beth Fulton, a senior research scientist at CSIRO Marine and Atmospheric Research in Hobart.
Continue reading Virtual management of the world’s oceans