All posts by Operations

Telescope of tiles

No moving parts – a new kind of radio telescope
The Murchison Widefield Array is a telescope with no moving parts. Credit: David Herne, ICRAR

Far outback in Western Australia, 32 tiles—flat, stationary sensors—each carrying 16 dipole antennas have begun collecting scientific data.

These first tiles will ultimately form part of a much bigger array of 512 tiles, the Murchison Widefield Array (MWA)—Australia’s second Square Kilometre Array (SKA) demonstrator project. Like CSIRO’s Australian SKA Pathfinder (ASKAP), the MWA is being built at the remote, radio-quiet Murchison Radio-astronomy Observatory (MRO). Continue reading Telescope of tiles

Tracing cosmic rays from radio pulses

‘THE DISH’ AT PARKES. CREDIT: SETH SHOSTAK
‘THE DISH’ AT PARKES. CREDIT: SETH SHOSTAK

The energy of ultra-high energy (UHE) cosmic rays that strike the Earth’s atmosphere make the energy produced from particle collisions by the Large Hadron Collider look puny. A team based in South Australia is now developing the techniques and technology to find out where such energetic particles could possibly originate. They ultimately hope to use the proposed SKA telescope to conduct their search.

“We think some cosmic rays are produced in the remnants of supernovae—exploding stars—but where the most energetic ones come from, that’s a mystery,” says Justin Bray, a PhD student hunting for their source as part of the LUNASKA (Lunar Ultra-high-energy Neutrino Astrophysics using SKA) project led by Ray Protheroe at the University of Adelaide and Ron Ekers at CSIRO. Continue reading Tracing cosmic rays from radio pulses

Australia’s SKA demonstrator already booked out

The sky's no limit with ASKAP
THE FIRST ASKAP DISH BEING ERECTED IN FEBRUARY 2010. CREDIT: DAVE DEBOER, CSIRO

It’s not due to begin operating until 2013, but astronomers from around the world are already lining up to use CSIRO’s Australian Square Kilometre Array Pathfinder (ASKAP). In fact, the first five years of ASKAP’s operation are already booked out, with ten major international Survey Science projects looking for pulsars, measuring cosmic magnetic fields, studying millions of galaxies, and more. Continue reading Australia’s SKA demonstrator already booked out

PlayStation graphics chips drive astronomy supercomputer

MATTHEW BAILES IN THE SWINBURNE VIRTUAL REALITY THEATRE IN FRONT OF AN IMAGE OF THE DOUBLE PULSAR DISCOVERED WITH CSIRO’S PARKES RADIO TELESCOPE. CREDIT: SWINBURNE UNIVERSITY OF TECHNOLOGY.
MATTHEW BAILES IN THE SWINBURNE VIRTUAL REALITY THEATRE IN FRONT OF AN IMAGE OF THE DOUBLE PULSAR DISCOVERED WITH CSIRO’S PARKES RADIO TELESCOPE. CREDIT: SWINBURNE UNIVERSITY OF TECHNOLOGY.

The technology used in your PC or PlayStation is also helping drive a revolution in radio astronomy—the replacement of custom-built hardware with flexible software and data solutions.

“Hardware solutions for radio astronomy have been evolving, but computer power has been evolving much faster,” says Matthew Bailes, from the Swinburne Centre for Astrophysics and Supercomputing. The Centre has developed software systems that are now used in Australia and overseas. Continue reading PlayStation graphics chips drive astronomy supercomputer

Supercomputers bring theory to life

A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.
A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.

Over aeons of time cosmic gas comes together, stars begin to form, supernovae explode, galaxies collide. And computational astronomers can watch it all unfold inside a supercomputer. That’s the kind of work post-doctoral fellows Rob Crain and Greg Poole are doing at the Swinburne Centre for Astrophysics and Supercomputing. Continue reading Supercomputers bring theory to life

Doubling up pays dividends in exoplanet hunt

“Twice the resolution and all the photons,” is Prof Chris Tinney’s new catchphrase. It refers to new equipment being commissioned on the Anglo-Australian Telescope to hunt for planets beyond our Solar System (exoplanets). Chris, from the University of New South Wales, is a leader of the Anglo-Australian Planet Search (AAPS), which has found 32 exoplanets, almost 10% of the worldwide total, since 1998.

Artist’s impression of an exoplanet with moons, orbiting the star HD70642 (photo credit: David A. Hardy, astroart.org (c) PPARC)

A Doppler shift in a star’s light spectrum often indicates the presence of planets. Unlike previous equipment, which frequently missed some of that light, the new system uses a cluster of optical fibres to gather all the starlight, boosting efficiency and doubling the Doppler precision.
Continue reading Doubling up pays dividends in exoplanet hunt

The destruction of a star

THE ZADKO TELESCOPE MAKING OBSERVATIONS NEAR GINGIN, 70 KILOMETRES NORTH OF PERTH. CREDIT: JOHN GOLDSMITH/CELESTIAL VISIONS.
THE ZADKO TELESCOPE MAKING OBSERVATIONS NEAR GINGIN, 70 KILOMETRES NORTH OF PERTH. CREDIT: JOHN GOLDSMITH/CELESTIAL VISIONS.

You have to be well prepared, quick and lucky to take a picture of an explosion, especially if that explosion occurred 11 billion years ago in a remote part of the Universe. Having the right equipment, plus friends in high places, certainly helps. And that’s exactly what the Zadko Telescope—managed by the University of Western Australia at the Gingin Observatory about 70 kilometres north of Perth—does have.

In December 2008, just after it was installed, the telescope was first on the scene to record for future analysis the afterglow of a momentous event—a huge explosion as a star collapsed into a black hole releasing a massive gamma-ray burst. It’s the kind of happening the one-metre Zadko Telescope, currently the largest optical telescope in Western Australia, was built to observe. And it performed flawlessly, outpacing the world’s most powerful telescopes at the European Southern Observatory in Chile.

Continue reading The destruction of a star

Starving cancer and other stories

Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]

Dirt solves murder mysteries

Australian detectives can now use a pinch of dirt or a speck of dust to help solve crimes, thanks to techniques developed at the Australian synchrotron.

PHOTO: A SPECK OF DUST OR A PINCH OF DIRT IS NOW ENOUGH TO SOLVE A MURDER. CREDIT: MITARAT
Soil composition is as unique as a fingerprint so scientists can analyse dirt samples and, in theory, match their results to specific regions of the Earth’s surface. Until recently, large sample sizes were needed to make this work.
Continue reading Dirt solves murder mysteries

Spot the nutrients

Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.

South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.

One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.

Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.

The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.

One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.

The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.

Photo: Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Credit: Enzo Lombi

Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au