Using quantum dots and a smartphone to find killer bacteria

Australian scientists develop cheap and rapid way to identify antibiotic-resistant golden staph (MRSA).

Researchers Anwar Sunna (right) and Vinoth Kumar Rajendran with their smartphone-enabled MRSA detector.
Credit: Sunna Lab

A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.

Staphylococcus aureus (golden staph), is a common form of bacterium that causes serious and sometimes fatal conditions such as pneumonia and heart valve infections. Of particular concern is a strain that does not respond to methicillin, the antibiotic of first resort, and is known as methicillin-resistant S. aureus, or MRSA.

Recent reports estimate that 700 000 deaths globally could be attributed to antimicrobial resistance, such as methicillin-resistance. Rapid identification of MRSA is essential for effective treatment, but current methods make it a challenging process, even within well-equipped hospitals.

Continue reading Using quantum dots and a smartphone to find killer bacteria

Anaemic star carries the mark of its ancient ancestor

Australian-led astronomers find the most iron-poor star in the Galaxy, hinting at the nature of the first stars in the Universe.

A visualisation of the formation of the first stars. Credit: Wise, Abel, Kaehler (KIPAC/SLAC)

A newly discovered ancient star containing a record-low amount of iron carries evidence of a class of even older stars, long hypothesised but assumed to have vanished.

In a paper published in the journal Monthly Notices of the Royal Astronomical Society: Letters, researchers led by Dr Thomas Nordlander of the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) confirm the existence of an ultra-metal-poor red giant star, located in the halo of the Milky Way, on the other side of the Galaxy about 35,000 light-years from Earth.

Continue reading Anaemic star carries the mark of its ancient ancestor

The world’s largest scientific instrument

In a whisper-quiet area of the outback in Western Australia, 133,000 radio telescope antennas are about to be built.

When complete, they’ll be able to pick up radio signals from the time when the first stars in the universe formed.

Continue reading The world’s largest scientific instrument

Spying on the denizens of the Southern Ocean

Sonar and satellites reveal the fish and other creatures that live far below the surface.

The depths of the ocean still hold great mysteries. At depths between 200 and 1,000 metres live creatures that, taken altogether, weigh as much as 10 billion tonnes.

Rudy Kloser, an expert on echo sounding and deep-sea ecosystems at CSIRO in Hobart, says these creatures are vital but poorly understood. Continue reading Spying on the denizens of the Southern Ocean

Big data for life

Australian and European researchers are finding the secrets of cancer and the immune system hiding in the numbers.

From his lab at the South Australian Health and Medical Research Institute (SAHMRI), Irish-born researcher David Lynn is combining computational and big data analysis with experimental approaches to unpicking biological networks at the molecular level. Continue reading Big data for life

Earth recycles ocean floor into diamonds

Most diamonds are made of cooked seabed.

The diamond on your finger is most likely made of recycled seabed cooked deep in the Earth.

Traces of salt trapped in many diamonds show the stones are formed from ancient seabeds that became buried deep beneath the Earth’s crust, according to new research led by Macquarie University geoscientists.

Most diamonds found at the Earth’s surface are formed this way; others are created by crystallization of melts deep in the mantle.

In experiments recreating the extreme pressures and temperatures found 200 kilometres underground, Dr Michael Förster, Professor Stephen Foley, Dr Olivier Alard, and colleagues at Goethe Universität and Johannes Gutenberg Universität in Germany, have demonstrated that seawater in sediment from the bottom of the ocean reacts in the right way to produce the balance of salts found in diamond.

The study, published in Science Advances, settles a long-standing question about the formation of diamonds. “There was a theory that the salts trapped inside diamonds came from marine seawater, but couldn’t be tested,” says lead author Michael. “Our research showed that they came from marine sediment.”

Continue reading Earth recycles ocean floor into diamonds

More safe havens for native plants and animals needed in NSW’s west

Location matters for species struggling to survive under a changing climate.

A new study led by Macquarie University has found we need to provide more safe havens for wildlife and plant species to survive under climate change in New South Wales’ west.

Along the Great Dividing Range, the vulnerable spotted-tailed quoll will be forced to move into higher habitats as the climate changes, but can find sanctuary in protected areas like Kosciuszko National Park.

The squirrel glider, also listed as a vulnerable species, will have more suitable places to live under climate change. However, few of its potential new homes in central western New South Wales are adequately protected.

Continue reading More safe havens for native plants and animals needed in NSW’s west

It’s not just fish, plastic pollution harms the bacteria that help us breathe

Ten per cent of the oxygen we breathe comes from just one kind of bacteria in the ocean. Now laboratory tests have shown that these bacteria are susceptible to plastic pollution, according to a study published in Communications Biology overnight.

“We found that exposure to chemicals leaching from plastic pollution interfered with the growth, photosynthesis and oxygen production of Prochlorococcus, the ocean’s most abundant photosynthetic bacteria,” says lead author and Macquarie University researcher Dr Sasha Tetu.

“Now we’d like to explore if plastic pollution is having the same impact on these microbes in the ocean.”

Continue reading It’s not just fish, plastic pollution harms the bacteria that help us breathe

Fixing hearts by finding out what makes them tick

You can learn a lot about hearts by trying to build one from scratch. A pair of scientists have grown ‘beating’ human heart muscle tissue from stem cells and are exploring cardiac regeneration.

Developmental biologist Associate Professor Enzo Porrello became interested in how newborn mammal hearts can regenerate while working in Dallas, Texas at one of the leading labs researching heart development.

Associate Professor James Hudson has a background in chemical and biological engineering. In Germany, he developed bioengineering techniques to make force-generating human heart tissue at the University Medical Center in Göttingen. Continue reading Fixing hearts by finding out what makes them tick

Modelling brain circuitry

With the help of a revolutionary robot, Professor David Adams and Associate Professor Mirella Dottori are studying neurons, testing drug candidates for chronic pain, and working towards precise, personalised neurological treatment.

David has been studying the neurology of chronic pain, while Mirella is a neural stem cell expert. Based at the University of Wollongong, their collaboration focusses on cells called dorsal root ganglia sensory neurons. These cells sense pressure, temperature, position, touch and pain, and the duo believe they could hold the key to many neurological disorders including chronic pain.

“Many diseases and disorders are caused by altered firing of signals along sensory nerves. Growing human sensory neurons [from stem cells] means we can study their development and function in both health and disease,” says Mirella. Continue reading Modelling brain circuitry