If the Milky Way did grow by swallowing up smaller galaxies, then another team suspects it knows where in the Milky Way some of those alien stars are hiding.
Duncan Forbes of Swinburne University of Technology and his Canadian colleague Terry Bridges are using Hubble Space Telescope data to identify clusters of alien stars, using the fact that their age and chemical composition differs from their neighbours.
Advanced telescopes need advanced astronomers to run them. Australia is matching the millions of dollars it is investing in new telescope technology with funds to help train the rising stars of Australian astronomy.
“We’ve had big investments in infrastructure, and now we need young scientists with the expertise to use them,” says Elaine Sadler, professor of Astrophysics at the University of Sydney and chair of the National Committee for Astronomy.
One new tranche of research funding for early career astronomers comes in the form of three-year Super Science Fellowships from the Commonwealth Government. In 2011, 14 young astronomers became Super Science Fellows, joining the 17 who started work in 2010. All up, astronomy will receive one-third of the Federal Government’s $27 million commitment to the Fellowships program. Continue reading Nurturing super astronomers at home→
Australia’s first observatory was built on the shores of Sydney Harbour by Lieutenant William Dawes of the First Fleet, on the point where the southern pylon of the Sydney Harbour Bridge now stands. Optical astronomy was essential for maritime navigation, and for providing precise location measurements for surveying the new continent.
The country’s first major observatory was established in 1821 at Parramatta by Thomas Brisbane, Governor of New South Wales and, later, President of the Royal Society. The observatory was used to discover and record the galaxy NGC 5128—a now much-studied galaxy that radio astronomers know as Centaurus A, within which sits a super-massive black hole (seeRecording the impact of a super-massive black hole). Continue reading From mapping a continent to surveying the Universe→
Scientific puzzles don’t come much bigger than these. How old is the Universe? How big is it? And what is its ultimate fate?
A single number, Hubble’s constant, is the key that can unlock all of those questions, but it’s a number that has proved notoriously hard to accurately measure. Hubble’s constant is the rate at which the Universe is expanding. The first team to accurately make that measurement was co-led by Jeremy Mould, now a professor at Swinburne University of Technology and professorial fellow at the University of Melbourne. Continue reading Measuring the Universe from start to finish→
A project to produce more than double the number of galaxy distance measurements than all other previous surveys, could lead to an explanation of one of nature’s biggest mysteries—whether dark energy, an invisible force that opposes gravity, has remained constant or changed since the beginning of time.
Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]
Australian detectives can now use a pinch of dirt or a speck of dust to help solve crimes, thanks to techniques developed at the Australian synchrotron.
Soil composition is as unique as a fingerprint so scientists can analyse dirt samples and, in theory, match their results to specific regions of the Earth’s surface. Until recently, large sample sizes were needed to make this work. Continue reading Dirt solves murder mysteries→
South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.
One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.
Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.
The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.
One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.
The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.
Photo: Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Credit: Enzo Lombi
Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au
For the one in five Australians of working age suffering from serious chronic pain, the options for relief are strictly limited. There’s morphine and . . . well, there’s morphine. But now one of the most powerful toxins in the natural world—the venom of marine cone snails—offers hope of a future free of pain and addiction, say researchers at RMIT University.
“The big problems with morphine are addictiveness and the fact that people develop a tolerance to it,” says Professor David Adams, director of the RMIT Health Innovations Research Institute. “With the painkillers derived from cone snail venom, we don’t have those problems. People don’t develop tolerance, and they don’t get hooked.
Smart capsules could change the way we deliver drugs.
Today, when we’re treated for cancer, the drug spreads throughout the body indiscriminately. Along the way it causes side-effects such as nausea and hair loss. Continue reading A smarter way to deliver drugs→
Hundreds of Aussie science achievements that you can share in speeches, posts and publications