Hungry galaxies grow fat on the flesh of their neighbours

Modelling shows big galaxies get bigger by merging with smaller ones

Distribution of dark matter density overlayed with the gas density. This image cleanly shows the gas channels connecting the central galaxy with its neighbours. Credit: Gupta et al/ASTRO 3D/ IllustrisTNG collaboration.

Galaxies grow large by eating their smaller neighbours, new research reveals.

Exactly how massive galaxies attain their size is poorly understood, not least because they swell over billions of years. But now a combination of observation and modelling from researchers led by Dr Anshu Gupta from Australia’s ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has provided a vital clue.

Continue reading Hungry galaxies grow fat on the flesh of their neighbours

Windows will soon generate electricity, following solar cell breakthrough

Two square metres of solar window will do the same job as a standard rooftop solar panel, Australian researchers say.

A semi-transparent perovskite solar cell with contrasting levels of light transparency.
Credits: Dr Jae Choul Yu

Semi-transparent solar cells that can be incorporated into window glass are a “game-changer” that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.

The researchers – led by Professor Jacek Jasieniak from the ARC Centre of Excellence in Exciton Science (Exciton Science) and Monash University – have succeeded in producing next-gen perovskite solar cells that generate electricity while allowing light to pass through. They are now investigating how the new technology could be built into commercial products with Viridian Glass, Australia’s largest glass manufacturer.

Continue reading Windows will soon generate electricity, following solar cell breakthrough

Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers

A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing. And it can be manufactured using conventional silicon chip foundries.

Dr Henry Yang and Professor Andrew Dzurak: “hot qubits” are a game-changer for quantum computing development.
Credit: Paul Henderson-Kelly

Most quantum computers being developed around the world will only work at fractions of a degree above absolute zero. That requires multi-million-dollar refrigeration and as soon as you plug them into conventional electronic circuits they’ll instantly overheat.

But now researchers led by Professor Andrew Dzurak at UNSW Sydney have addressed this problem.

Continue reading Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers

Solving a mystery in 126 dimensions

After 90 years, scientists reveal the structure of benzene.

Professor Timothy Schmidt, unravelling the mystery of benzene. Credit Exciton Science

One of the fundamental mysteries of chemistry has been solved by Australian scientists – and the result may have implications for future designs of solar cells, organic light-emitting diodes and other next gen technologies.

Ever since the 1930s debate has raged inside chemistry circles concerning the fundamental structure of benzene. It is a debate that in recent years has taken on added urgency, because benzene – which comprises six carbon atoms matched with six hydrogen atoms – is the smallest molecule that can be used in the production of opto-electronic materials, which are revolutionising renewable energy and telecommunications tech.

Continue reading Solving a mystery in 126 dimensions