Tag Archives: synchrotron

Australian crystals clean gas, food, air…

Forty per cent of the energy consumed by industry is used to separate things— in natural gas production, mineral processing, food production, pollution control. The list goes on.

Matthew Hill’s crystals will save energy across industry. Credit: Prime Minister’s Prizes for Science/WildBear
Matthew Hill’s crystals will save energy across industry. Credit: Prime Minister’s Prizes for Science/WildBear

Each offers an application for Matthew Hill’s crystals. He has demonstrated that the space inside metal–organic frameworks (MOFs)—the world’s most porous materials—can be used as efficient and long-lasting filters.

By choosing different combinations of metals and plastics, Matthew’s CSIRO team can make a wide range of customised crystals. Then, using antimatter and synchrotron light, they map the internal pores, determine what each crystal can do and explore potential applications.

Continue reading Australian crystals clean gas, food, air…

How bugs stick to our stomachs

James Whisstock and his Monash University colleagues have uncovered how the bacterium Helicobacter pylori sticks to the stomach lining, where it can cause ulcers and sometimes cancer.

Photo: James Whisstock. Credit: MNHS Multimedia Services, Monash University

The role of Helicobacter in causing gastric ulcers was originally discovered by Australian Nobel Laureates Barry Marshall and Robin Warren.

The recent work by James and his team was performed using the Australian Synchrotron and showed how the Helicobacter pylori protein SabA interacts with sugars present on the cells that line the stomach.

Continue reading How bugs stick to our stomachs

Australian Synchrotron helps its big brother in Geneva

New technologies and techniques needed for the next upgrade of the Large Hadron Collider (LHC) are being tested at the Australian Synchrotron.

The Australian Synchrotron is helping CERN researchers develop better particle beams for the Large Hadron Collider. Credit: The Australian Synchrotron
The Australian Synchrotron is helping CERN researchers develop better particle beams for the Large Hadron Collider. Credit: The Australian Synchrotron

In 2013, the LHC will shut down for enhancements that will enable it to generate a reliable supply of Higgs-like particles.
Continue reading Australian Synchrotron helps its big brother in Geneva

Hidden art revealed

A glimpse of a rare self-portrait by one of Australia’s most highly regarded artists has emerged from what appeared to be a blank canvas—thanks to researchers at the Australian Synchrotron.

A rare Streeton self-portrait, revealed in this image of zinc atoms. The highest concentrations are in the white of Streeton’s collar and the fairness of his face because zinc is used in the white pigment. Credit: Daryl Howard
A rare Streeton self-portrait, revealed in this image of zinc atoms. The highest concentrations are in the white of Streeton’s collar and the fairness of his face because zinc is used in the white pigment. Credit: Daryl Howard

A glimpse of a rare self-portrait by one of Australia’s most highly regarded artists has emerged from what appeared to be a blank canvas—thanks to researchers at the Australian Synchrotron.

Continue reading Hidden art revealed

New light on storing energy

Solving the problem of how to store energy is essential for a future run on renewables.

That’s why promising materials for hydrogen fuel cells and high capacity, long-lived batteries are being explored at the atomic level by the Australian Synchrotron.

QUINFEN GU IS INVESTIGATING A NEW CLASS OF HYDROGEN STORAGE MATERIALS. CREDIT: ISTOCKPHOTO

Australian Synchrotron scientist Dr Qinfen Gu is investigating a new class of hydrogen storage materials being developed by scientists at the University of Wollongong and their international collaborators.Qinfen is using the powerful X-rays of the synchrotron to observe and analyse the structure of these materials. Continue reading New light on storing energy

Starving cancer and other stories

Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds [...]

Dirt solves murder mysteries

Australian detectives can now use a pinch of dirt or a speck of dust to help solve crimes, thanks to techniques developed at the Australian synchrotron.

PHOTO: A SPECK OF DUST OR A PINCH OF DIRT IS NOW ENOUGH TO SOLVE A MURDER. CREDIT: MITARAT
Soil composition is as unique as a fingerprint so scientists can analyse dirt samples and, in theory, match their results to specific regions of the Earth’s surface. Until recently, large sample sizes were needed to make this work.
Continue reading Dirt solves murder mysteries

Spot the nutrients

Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.

South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.

One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.

Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.

The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.

One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.

The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.

Photo: Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Credit: Enzo Lombi

Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au

How a molecular assassin operates

The secrets of a molecular assassin could lead to more effective treatments for cancer and viral diseases, better therapy for autoimmune conditions, and a deeper understanding of the body’s defences enabling the development of more tightly focused immunosuppressive drugs.

How a molecular assassin operates
In this simulation, the perforin molecule (blue) punches a hole through the cell membrane (beige) providing access for toxic enzymes (red). Credit: Mike Kuiper
These are just some of the wide-ranging possibilities arising from research which has revealed the structure and function of the protein perforin, a front-line weapon in the body’s fight against rogue cells.

A pivotal role was played by 2006 Science Minister’s Life Scientist of the Year, molecular biologist Prof James Whisstock and his research team at Monash University. It was research fellow Dr Ruby Law who finally worked out how to grow crystals of perforin. And the team was then able to collaborate with Dr Tom Caradoc-Davies of the micro-crystallography beamline at the nearby Australian Synchrotron to reveal its complete molecular structure.
Continue reading How a molecular assassin operates