The eye’s cornea depends on stem cells to help maintain transparency. If disease or trauma deplete stem cell reservoirs, a rapid and painful loss of vision soon follows.
Professor Stephanie Watson and Professor Nick Di Girolamo have used stem cells to repair their patients’ vision. It’s the culmination of a 15-year collaboration to restore sight in Australians with corneal disease.
Stephanie is an international leader in research and innovation with the University of Sydney and is also a practising corneal surgeon. She met Nick as an early career scientist through a research group at the University of New South Wales and they discovered their shared interest. Nick is now a Director with the School of Medical Sciences at UNSW. Continue reading Clearing corneas and restoring vision→
Macquarie University researchers discovered that most sharks are colour blind, and used that knowledge to create patented wetsuit camouflage designs that are now on the market. Now the team is looking at how sharks perceive surfboards.
Associate Professor Nathan Hart, his students and collaborators are taking a new look at the sensory world of sharks. Using a range of physiological, genetic and behavioural methods, they have obtained the clearest view yet of how sharks, including notorious predators such the great white shark, see the world around them.
A patented treatment could restore eyesight for millions of sufferers of corneal disease.
The University of Melbourne-led team of researchers have grown corneal cells on a layer of film that can be implanted in the eye to help the cornea heal itself. They have successfully restored vision in animal trials and are aiming to move to human trials in 2017.
He isn’t a pilot, but few people would know more about ways of navigating while flying than Prof Mandyam Srinivasan (Srini) of the Queensland Brain Institute. And he’s steadily finding out more.
Initially known for his work in bees, since receiving the Prime Minister’s Prize for Science in 2006, Srini has shown that birds and insects use a similar system of visual guidance to prevent themselves from crashing into trees when flying through dense forest.
New glasses that slow the progression of short-sightedness or myopia are now available. The glasses which incorporate a novel lens design could potentially benefit some of the 3.6 million Australians with myopia and hundreds of millions of people worldwide.
Until now, correcting myopia has relied on measuring the clarity of vision at the very centre of the retina. Corrective lenses were designed to provide the wearer with clear central vision but did nothing for peripheral vision. Studies have now shown that short-sightedness progressively worsens in spite of correction using these traditional lenses.
Melbourne scientists gave Australia the first practical bionic ear. Today, over 180,000 people hear with the help of the cochlear implant.
Now, The University of Melbourne is a key member in an Australian consortium developing an advanced bionic eye that will restore vision to people with severe vision loss. This device will enable unprecedented high resolution images to be seen by thousands of people with severely diminished sight, allowing them to read large print and recognise faces.