Imagine if your exercise clothes could generate enough electricity to power your workout gadgets. This could be a reality in a few years with the development of a flexible, self-charging, non-leaky battery (or thermocell) that could convert body heat into power for devices such as fitness trackers. Continue reading Converting body heat into useable electricity→
A new approach to horticultural spraying could be the result of a collaboration between design students from Kyoto Institute of Technology and Swinburne University in Melbourne.
“Yanmar is a manufacturer of farm machinery, and they asked us to solve a big problem for grape-growers,” says Natsumi Takamatsu, a design student at Kyoto.
“What we developed was a sprayer to mitigate the drift of sprayed agricultural chemicals. Really it was the actual viticulturists when we interviewed them and they were saying things like ‘If only I had something like this.’”
“Australia and Japan enjoy the seasons at opposite times of the year so we can conduct field research in the vineyards all year,” says Yoshiro Ono from Kyoto Institute of Technology.
Harnessing the sun and improving agriculture
Mitsubishi Heavy Industries have built a pilot concentrated solar power plant in Yokohama. It uses CSIRO technology now being manufactured by South Australian company Heliostat SA.
“We’re making seven-and-a-half-metre square solar mirrors,” says David Linder-Patton, the CEO of Heliostat SA.
They focus the sun’s energy into a tower receiver that generates heat which can be used in industries such as steel manufacturing, brick processing and mineral refining.
The Mitsubishi plant will test their technology on receivers they have developed and also CSIRO’s suntracking technology and heliostat manufacturing.
“Working with companies the size of Mitsubishi helps us to get to industrial scale a lot quicker than we could do otherwise,” says David.
‘Artificial leaves’ are bringing us one step closer to cheap, renewable and commercially-viable fuels that could power your car, house or whole community, thanks to researchers at Monash University.
Professor Doug MacFarlane and his team at the ARC Centre of Excellence for Electromaterials Science are using sun, water and CO2 to produce hydrogen and methanol fuels.
Their artificial photosynthesis takes its inspiration from the way plants convert sunlight into energy, and then recreates it in an industrial setting.
We can make biofuels with algae, but can we make them commercially viable?
A University of Queensland (UQ) research team is working towards it – and Siemens, Neste Oil Corp, the Queensland Government and others have joined their quest.
The Solar Biofuels Research Centre is one of the most advanced national facilities investigating the development and use of high-efficiency microalgae production platforms.
Solving the problem of how to store energy is essential for a future run on renewables.
That’s why promising materials for hydrogen fuel cells and high capacity, long-lived batteries are being explored at the atomic level by the Australian Synchrotron.
Australian Synchrotron scientist Dr Qinfen Gu is investigating a new class of hydrogen storage materials being developed by scientists at the University of Wollongong and their international collaborators.Qinfen is using the powerful X-rays of the synchrotron to observe and analyse the structure of these materials. Continue reading New light on storing energy→
Hundreds of Aussie science achievements that you can share in speeches, posts and publications