For complete profiles, photos and videos, and more information on the Prime Minister’s Prizes for Science, visit www.science.gov.au/pmscienceprizes

For complete profiles, photos and videos, and more information on the Prime Minister’s Prizes for Science, visit www.science.gov.au/pmscienceprizes

Life on land depends on plants. And every plant balances opening its pores to let in carbon dioxide for photosynthesis; and closing its pores to retain water.
Graham Farquhar’s work has transformed our understanding of photosynthesis.
His models of plant biophysics have been used to understand cells, whole plants, whole forests, and to create new water-efficient wheat varieties.
Continue reading Feeding the world, and asking where the wind went

Associate Professor Cyrille Boyer’s ideas are built on the revolutionary RAFT techniques (a technique to precisely control how small molecules are linked together to form large polymer chains) for which Professor David Solomon and Dr Ezio Rizzardo received the 2011 Prime Minister’s Prize for Science. His latest technology uses light and chlorophyll to catalyse the production of polymers.

Continue reading Improved primary science teaching at no extra cost
Graeme took flotation, a century-old technology developed in Broken Hill, and transformed it. A turbulent cloud of minute bubbles are pushed through a slurry of ground-up ore where they pick up tiny mineral particles and carry them to the surface.

She develops and assesses species distribution models, which are used by governments, land and catchment managers and conservationists around the world—in short, for applying the lessons of ecology.

Another layer of complexity—the epigenome— is at work determining when and where genes are turned on and off.
Ryan Lister is unravelling this complexity. He’s created ways of mapping the millions of molecular markers of where genes have been switched on or off, has made the first maps of these markers in plants and humans, and has revealed key differences between the markers in cells with different fates.

Geoff McNamara from Melrose High School in Canberra has created a hothouse of science learning—complete with a seismometer, GPS antenna and weather station, each transmitting real-time data straight into the classroom.
“We all need science literacy to navigate the complexity of the modern world,” says Geoff. So he reaches out to each student’s interests— from genetics to driving to cosmology— to demonstrate the inevitable relevance of science.

Twenty years ago doctors tended to regard most forms of epilepsy as acquired rather than inherited. In other words, they believed epilepsy was mostly due to injury: the result of things like a crack on the head in a car accident, a bad fall in the playground, a tumour, or something having gone wrong in labour. Parents felt responsible and the resulting guilt was enormous.
The two clinician-researchers from The University of Melbourne have led the way in finding a genetic basis for many epilepsies, building on their discovery of the first ever link between a specific gene and a form of epilepsy. Finding that answer has been of profound importance for families.
Along the way, Sam and Ingrid discovered that a particularly severe form of epilepsy, thought to result from vaccination, was actually caused by a gene mutation. This finding dispelled significant concerns about immunisation.
Continue reading The genetics of epilepsy: bringing hope to families

Each offers an application for Matthew Hill’s crystals. He has demonstrated that the space inside metalorganic frameworks (MOFs)—the world’s most porous materials—can be used as efficient and long-lasting filters.
By choosing different combinations of metals and plastics, Matthew’s CSIRO team can make a wide range of customised crystals. Then, using antimatter and synchrotron light, they map the internal pores, determine what each crystal can do and explore potential applications.