The first microscopes gave humans the ability peer deep into the microscopic world, allowing us to see cells and microbes in unprecedented detail. Using the latest electron microscopes we are now able to see detail down to single atoms.
In fact, materials scientists can detect impurities in their latest compounds, atom by atom, using powerful electron microscopes aided by sophisticated modelling of what happens when the electron beam hits the material.
Dr Adrian D’Alfonso and a team of theoretical physicists at the University of Melbourne have developed these models and they are already helping groups around the world look at and understand nanomaterials in a way they haven’t been able to before.
Physicist Dr Amanda Barnard has been using supercomputers to find the balance between sun protection and potential toxicity in a new generation of sunscreens which employ nanoparticles.
The metal oxide nanoparticles which block solar radiation are so small they cannot be seen, so the sunscreen appears transparent. But if the particles are too small, they can produce toxic levels of free radicals.
Amanda, who heads CSIRO’s Virtual Nanoscience Laboratory, has been able to come up with a trade-off—the optimum size of particle to provide maximum UV protection for minimal toxicity while maintaining transparency—by modelling the relevant interactions on a supercomputer. Continue reading Saving our skins→
Keeping electronics cool in high power applications such as telecommunications and building electronics on the nanoscale are two areas where there is an alternative to traditional silicon—electronics using diamond. Continue reading Diamonds for extreme electronics→
Imagine a future where recharging your tablet could be as easy as typing a tweet—where portable electronic devices power themselves without ever plugging into the grid.
Researchers at RMIT University, Melbourne have assessed the capacity of piezoelectric films—thin layers that turn mechanical pressure into electricity—to do this.
The study is the first to evaluate how piezoelectric thin films, a thousandth of a millimetre thick, perform at the molecular level, precisely measuring the level of electrical voltage and current—and therefore, power—that could be generated. Continue reading A step towards an everlasting battery→
Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.
Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.
High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”
Making cement is the third largest source of carbon emissions in the world after the burning of fossil fuels and deforestation—but the Australian roads of the future could be paved with cement that is made in a process that generates less than half the carbon emissions of traditional methods.
Each year, the world produces about 12 billion tonnes of concrete and about 1.6 billion tonnes of its key ingredient, Portland cement, which is generated by breaking calcium carbonate into carbon dioxide and calcium oxide.
This produces some 2 billion tons of carbon dioxide—so the Geopolymer and Mineral Processing Group (GMPG) at the University of Melbourne, now led by Dr John Provis, went looking for a lower carbon way of making cement.
They have now developed binders and concretes based on a low-CO2 aluminosilicate compounds called geopolymers.
Blood tests using nanoparticles carrying molecules which can detect breast cancer biomarkers could save millions of lives and open the way to mass screening for many cancers.
Prof. Matt Trau, of the Australian Institute for Bioengineering & Nanotechnology at the University of Queensland, and his team are using a combination of nanotechnology and molecular biology in the project, funded by a five-year $5 million grant from the National Breast Cancer Foundation.
The only way to find out whether the internal structures of an aircraft are corroded is to pull the plane apart and look. But new nanotechnology-based techniques being developed by Prof. Tanya Monro, Director of University of Adelaide’s Centre of Expertise in Photonics, in collaboration with the Defence Science and Technology Organisation, could make costly visual inspection in preventive aircraft maintenance a thing of the past.