A patented treatment could restore eyesight for millions of sufferers of corneal disease.
The University of Melbourne-led team of researchers have grown corneal cells on a layer of film that can be implanted in the eye to help the cornea heal itself. They have successfully restored vision in animal trials and are aiming to move to human trials in 2017.
Around fifteen per cent of people aged in their fifties who think their eyes are fine will show the early signs of age-related macular degeneration (AMD) if tested.
It is Australia’s leading cause of blindness and there is no way to stop it progressing even when detected in its earliest phase.
Electrodes made of diamond are helping Melbourne researchers build a better bionic eye.
Some types of blindness are caused by diseases where the light-sensing part of the retina is damaged, but the nerves that communicate with the brain are still healthy—for example, retinitis pigmentosa and age-related macular degeneration.
Dr David Garrett and his colleagues at the Melbourne Materials Institute at the University of Melbourne are using diamond to build electrodes that can replace the light-sensing function of the retina: they deliver an electrical signal to the eye via a light-sensing camera.
It’s much better to give new glasses than recycled glasses if you want to help one of the 640 million people who are vision-impaired or blind simply for the lack of an eye examination and appropriate glasses.
This is according to a new international study led by Australian researchers.
Dr David Wilson, research manager in the Asia-Pacific for International Centre for Eyecare Education and head author of a major paper on the topic, says although you might feel good sending your old reading glasses to a developing country, it is far better to give $10 for an eye examination and a new pair of glasses—and that’s more likely to strengthen the ability of these communities to help themselves. Continue reading Donating used eyeglasses is a poor use of resources→
He isn’t a pilot, but few people would know more about ways of navigating while flying than Prof Mandyam Srinivasan (Srini) of the Queensland Brain Institute. And he’s steadily finding out more.
Initially known for his work in bees, since receiving the Prime Minister’s Prize for Science in 2006, Srini has shown that birds and insects use a similar system of visual guidance to prevent themselves from crashing into trees when flying through dense forest.
Donor corneas conditioned with DNA before being transplanted into new eyes are already actively contributing to their own success in experimental animals such as sheep.
The DNA is inserted into the cells of the cornea after it has been harvested. Then, following implantation, it produces proteins that help overcome immunological rejection.
This is one of many strands of research aimed at increasing the success rates of corneal transplants and other eye disease treatments undertaken by Prof Keryn Williams at Flinders University. Continue reading Helping eyes to help themselves→
New glasses that slow the progression of short-sightedness or myopia are now available. The glasses which incorporate a novel lens design could potentially benefit some of the 3.6 million Australians with myopia and hundreds of millions of people worldwide.
Until now, correcting myopia has relied on measuring the clarity of vision at the very centre of the retina. Corrective lenses were designed to provide the wearer with clear central vision but did nothing for peripheral vision. Studies have now shown that short-sightedness progressively worsens in spite of correction using these traditional lenses.
Melbourne scientists gave Australia the first practical bionic ear. Today, over 180,000 people hear with the help of the cochlear implant.
Now, The University of Melbourne is a key member in an Australian consortium developing an advanced bionic eye that will restore vision to people with severe vision loss. This device will enable unprecedented high resolution images to be seen by thousands of people with severely diminished sight, allowing them to read large print and recognise faces.