A typhoid outbreak in Kathmandu has provided new insights into bacterial epidemics and antibiotic resistance, thanks to a Melbourne scientist’s genomic research.
Kathryn Holt, of the University of Melbourne’s Bio21 Institute, used genome sequencing to discover that an epidemic of deadly typhoid bacteria in Nepal’s capital city was driven by climate, and not by the outbreak of novel genetic strains.
Her research, published in the Royal Society journal Open Biology, changes our understanding of how typhoid spreads and how we can better respond to other bacterial epidemics.
Bearded dragons are revealing some of the secrets behind their colour-changing ways, thanks to the work of a Melbourne evolutionary scientist.
Devi Stuart-Fox has discovered that bearded dragons change colour in response to heat, allowing them to regulate their body temperature.
Her research opens the way for scientists to imitate lizards and develop materials that respond to light and temperature for solar energy, sensor and biomedical applications.
Fifty million children in the world’s poorest countries will be vaccinated against the deadly rotavirus by 2015, thanks to the breakthrough work of a quiet Melbourne researcher.
Ruth Bishop’s rotavirus discovery led to the development of the vaccine currently being rolled out by the Global Alliance for Vaccines and Immunisation—and to her declaration as 2013 CSL Florey Medal winner.
Each year, around half a million children die from rotavirus infection and the acute gastroenteritis it causes.
Nanoscale spikes on dragonfly wings are inspiring materials that kill bacteria, including deadly antibiotic-resistant golden staph (Staphylococcus aureus).
Elena Ivanova and her fellow researchers at Swinburne University of Technology were studying self-cleaning surfaces in nature when they discovered bacteria being killed on the wings of the clanger cicada, Psaltoda claripennis, a species mostly found in Queensland.
The secret seemed to lie in millions of tiny rounded spikes, or nanopillars, each a thousand times smaller than the width of a human hair.
Sea snails and sponges are shedding light on how to create electronic-free circuitry and environmentally friendly optical fibre, say Geelong scientists.
Inspired by the materials these sea creatures make, an Australian-US team is trying to create 3D gold nanoparticle arrays that channel light.
“Effectively we are creating circuitry without electronics,” says Tiffany Walsh, Veski Innovation Fellow and one of the researchers from Deakin University.
An axolotl’s ability to regrow limbs and repair brain and heart tissue could shed light on how humans might one day do the same, after Melbourne scientists discovered the key role played by macrophages, immune system cells, in the animal’s regenerative process.
James Godwin and his colleagues at the Australian Regenerative Medicine Institute (ARMI) have identified the critical role of macrophages in axolotl tissue regeneration, raising the hope of future treatments for human spinal cord and brain injuries, as well as heart and liver disease.
Most people remember their first kiss but Victorian scientists have discovered that your first hug is much further back than you think.
Nicolas Plachta and his team at the Australian Regenerative Medicine Institute have discovered that embryos, when only eight cells in size, develop arm-like structures that ‘hug’ the cells into shape, helping to determine an embryo’s ultimate success.
The study, which was published in the journal Nature Cell Biology, used live imaging and fluorescent markers to capture the action in mouse embryos.
A Melbourne scientist is harvesting the memory found in reprogrammed adult cells to develop cell therapy techniques that have the potential to cure a number of diseases.
Jose Polo, of Monash University, has found that induced pluripotent stem (iPS) cells don’t lose all their memory after reprogramming, flagging the possibility that a better understanding of these stem cells will aid regenerative medicine.
“Basically an iPS cell derived from muscle is more likely to reprogram back into muscle cells, while iPS cells derived from skin will generate skin cells,” says Jose. “And this could influence what type of iPS cell you might choose to generate a specific cell type.”
An accidental discovery by Melbourne researchers has revealed the purpose of ‘mystery’ immune cells in the gut, shown how our immune system interacts with the complex bacteria ecology found there, and opened new paths for drug discovery.
Our guts, lungs and mouths are lined with mysterious immune cells that make up to 10 per cent of the T cells in our immune system. These immune cells, known as mucosal-associated invariant T cells (MAITs), detect reactive intermediates in the synthesis of vitamin B2 (riboflavin) that is made by many invasive bacteria and fungi.
Dengue fever is on the march and threatening the growing populations of Asia and even northern Australia. But a ‘vaccine’ for mosquitoes could stop it in its tracks.
A team of researchers from Melbourne, Brisbane, Cairns and Brazil has found a bacterium, Wolbachia, in fruit flies, which could stop mosquitoes from spreading dengue.