Insulin in a plant seed

An edible plant seed could deliver your insulin or cancer drugs if David Craik’s research progresses as hoped. His team’s work at The University of Queensland’s Institute for Molecular Bioscience centres on cyclotides, which are a family of exceptionally stable circular proteins that occur naturally in many plants, such as violets and petunia.

Circular proteins naturally occuring in plants such as petunia have inspired David Craik’s research. Credit: The University of Queensland

Inspired by the stability and diversity of natural cyclotides, David’s team has developed a way to join the two ends of a linear protein, allowing them to create ‘designer’ cyclotides that can be incorporated into crop plants, turning them into production factories for therapeutic drugs and insecticides.

Continue reading Insulin in a plant seed

Australian crystals clean gas, food, air…

Forty per cent of the energy consumed by industry is used to separate things— in natural gas production, mineral processing, food production, pollution control. The list goes on.

Matthew Hill’s crystals will save energy across industry. Credit: Prime Minister’s Prizes for Science/WildBear
Matthew Hill’s crystals will save energy across industry. Credit: Prime Minister’s Prizes for Science/WildBear

Each offers an application for Matthew Hill’s crystals. He has demonstrated that the space inside metal–organic frameworks (MOFs)—the world’s most porous materials—can be used as efficient and long-lasting filters.

By choosing different combinations of metals and plastics, Matthew’s CSIRO team can make a wide range of customised crystals. Then, using antimatter and synchrotron light, they map the internal pores, determine what each crystal can do and explore potential applications.

Continue reading Australian crystals clean gas, food, air…

The genetics of epilepsy: bringing hope to families

Sam Berkovic and Ingrid Scheffer have changed the way the world thinks about epilepsy, a debilitating condition that affects about 50 million people.

The Hon Tony Abbott, PM, with recipients of the 2014 Prizes, credit: Prime Minister’s Prizes for Science; Ingrid Scheffer and Sam Berkovic revealed the underlying genetic element of many epilepsies. Credit: Prime Minister’s Prizes for Science/WildBear
The Hon Tony Abbott, PM, with recipients of the 2014 Prizes, credit: Prime Minister’s Prizes for Science; Ingrid Scheffer and Sam Berkovic revealed the underlying genetic element
of many epilepsies. Credit: Prime Minister’s Prizes for Science/WildBear

Twenty years ago doctors tended to regard most forms of epilepsy as acquired rather than inherited. In other words, they believed epilepsy was mostly due to injury: the result of things like a crack on the head in a car accident, a bad fall in the playground, a tumour, or something having gone wrong in labour. Parents felt responsible and the resulting guilt was enormous.

The two clinician-researchers from The University of Melbourne have led the way in finding a genetic basis for many epilepsies, building on their discovery of the first ever link between a specific gene and a form of epilepsy. Finding that answer has been of profound importance for families.

Along the way, Sam and Ingrid discovered that a particularly severe form of epilepsy, thought to result from vaccination, was actually caused by a gene mutation. This finding dispelled significant concerns about immunisation.

Continue reading The genetics of epilepsy: bringing hope to families