The genetics of epilepsy: bringing hope to families

Sam Berkovic and Ingrid Scheffer have changed the way the world thinks about epilepsy, a debilitating condition that affects about 50 million people.

The Hon Tony Abbott, PM, with recipients of the 2014 Prizes, credit: Prime Minister’s Prizes for Science; Ingrid Scheffer and Sam Berkovic revealed the underlying genetic element of many epilepsies. Credit: Prime Minister’s Prizes for Science/WildBear
The Hon Tony Abbott, PM, with recipients of the 2014 Prizes, credit: Prime Minister’s Prizes for Science; Ingrid Scheffer and Sam Berkovic revealed the underlying genetic element
of many epilepsies. Credit: Prime Minister’s Prizes for Science/WildBear

Twenty years ago doctors tended to regard most forms of epilepsy as acquired rather than inherited. In other words, they believed epilepsy was mostly due to injury: the result of things like a crack on the head in a car accident, a bad fall in the playground, a tumour, or something having gone wrong in labour. Parents felt responsible and the resulting guilt was enormous.

The two clinician-researchers from The University of Melbourne have led the way in finding a genetic basis for many epilepsies, building on their discovery of the first ever link between a specific gene and a form of epilepsy. Finding that answer has been of profound importance for families.

Along the way, Sam and Ingrid discovered that a particularly severe form of epilepsy, thought to result from vaccination, was actually caused by a gene mutation. This finding dispelled significant concerns about immunisation.

Continue reading The genetics of epilepsy: bringing hope to families

How flies can help us predict the future

Dr Vanessa Kellermann, evolutionary biologist, Monash University, Melbourne

Dr Vanessa Kellermann (credit: L’Oréal Australia) Our planet’s climate is changing. How will bees cope—will they still be able to pollinate our crops? Will dengue and malaria–carrying mosquitoes spread south?

Vanessa Kellermann is working with native fruit fly species from Tasmania to tropical Queensland to find out. She has already demonstrated that tropical flies are more vulnerable to change in the long term. They don’t have the genetic capacity to evolve quickly. Now, with her L’Oréal For Women in Science Fellowship, she will explore how flexible they are in the short term—how individual insects can respond to change during their lifetimes.

“No one sets out to study flies,” she says. But they are perfect for asking basic questions that will allow us to create models of evolution and help people—from farmers to health professionals—plan for change.

When Dr Vanessa Kellermann tells people she studies flies, there’s an almost automatic assumption that she’s working to get rid of them. In fact, it’s quite the reverse. Vanessa would consider her research a success if her flies hung around for many more millions of years, along with most of the other plants and animals on Earth.

Continue reading How flies can help us predict the future

Clean water with crystals

Dr Cara Doherty, materials scientist, CSIRO, Melbourne

Dr Cara Doherty (credit: L’Oréal Australia) Cara Doherty is developing new technologies that could transform water filters, batteries and medical sensors, and clean up carbon emissions. And it all comes down to holes and surface area.

She has a vision for a new manufacturing industry for Australia. She works with crystals that are packed with… nothing. They’re highly porous sponges—down to a molecular level—and can be customised to absorb almost any molecule.

These crystals are metal–organic frameworks (MOFs). They can be challenging to make. And it’s also difficult to determine which crystal will be good for which job. But it’s even harder to deploy the crystals—to put them in the right place to do useful work.

Cara uses antimatter (positrons) and synchrotron light (X-rays) to measure the crystals and their properties. Then she uses her patented technique to imprint useful shapes for devices.

With the help of her L’Oréal For Women in Science Fellowship she will investigate how to take the next step: to develop the 3D structures that would be needed for a smart water filter.

Continue reading Clean water with crystals

Tracking the spread of deadly diseases

Dr Kathryn (Kat) Holt, Bio21 Institute, The University of Melbourne

Kathryn-Holt-700x500-2 Kat Holt is using genetics, maths and supercomputers to study the whole genome of deadly bacteria and work out how they spread. Studying a typhoid epidemic in Kathmandu, she found that it didn’t spread in the way we thought epidemics did. Her research, published in Nature Genetics, will change how we go about responding to epidemics.

With the support of her L’Oréal For Women in Science Fellowship, Kat will be using the same techniques to understand how antibiotic-resistant bacteria spread in Melbourne hospitals. Are people catching these superbugs in hospital, or are they bringing the bugs into hospital with them? Can we give the intensive care clinicians early warning of a drug-resistant bacteria in their patients?

Kathryn (Kat) has been a pioneer ever since she became the first student at the University of Western Australia to undertake an honours year in the then-fledgling area of bioinformatics.

Kat ventured across the Nullarbor to the other side of Australia—to the Walter and Eliza Hall Institute of Medical Research in Melbourne—where she sought advice from bioinformatics guru Prof Terry Speed. As a result, she ended up as a doctoral student at the world renowned Sanger Institute at the University of Cambridge, one of the homes of the human genome project.
Continue reading Tracking the spread of deadly diseases

How Australia and India broke up—100 million years ago

Dr Joanne (Jo) Whittaker, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart

Dr Joanne (Jo) Whittaker likes to solve jigsaw puzzles. Now this marine geoscientist is tackling the biggest puzzle on the planet—the formation of continents.
With SDP_0059 the help of Australia’s national marine research vessels, and now her L’Oréal Fellowship, Jo is reconstructing how the Indian, Australian and Antarctic tectonic plates separated over the past 200 million years, forming the Indian Ocean and the continents as we see them today. This information will help us model climate change better, find new gas resources, and understand the dynamics of the land in which we live.

The piece of this jigsaw she is now working on centres on two underwater plateaux, the Batavia and Gulden Draak Knolls, towering about 3000 metres above the Perth Abyssal Plain (PAP), which is around 1600 kilometres off the coast of Geraldton in Western Australia. In November 2011, Jo’s team mapped and sampled rocks from both knolls. Based on the evidence so far, Jo says, it looks like they split from the margins of the moving Indian Plate about 100 million years ago.
Continue reading How Australia and India broke up—100 million years ago

When killing saves lives: our immune system at work

Dr Misty Jenkins, Peter MacCallum Cancer Centre, Melbourne

Misty-Jenkins-700x500 Dr Misty Jenkins spends a lot of her time watching killers at work: the white blood cells of the body that eliminate infected and cancerous cells. She can already tell you a great deal about how they develop into assassins and arm themselves. Now with the support of her L’Oréal For Women in Science Fellowship Misty is exploring how they become efficient serial killers—killing one cancer cell in minutes and moving on to hunt down others. Her work will give us a greater understanding of our immune system and open the way to better manage T cells to defeat disease.

Misty’s career so far has been quite a journey for a girl from Ballarat. Along the way she been mentored by Nobel Prize-winning immunologist Prof Peter Doherty and become the first Indigenous Australian to attend either Oxford or Cambridge. Now working with Prof Joe Trapani as a National Health and Medical Research Council  (NHMRC) postdoctoral fellow in the Cancer Cell Death laboratory at the Peter MacCallum Cancer Centre in Melbourne, Misty has been awarded a $25,000 L’Oréal Australia and New Zealand For Women in Science Fellowship. She will use the money to further her study of what triggers T cells to detach themselves from their targets and seek additional prey.
Continue reading When killing saves lives: our immune system at work

Giving patients more control of their lives

Dr Suetonia Palmer

University of Otago, Christchurch, New Zealand

Dr Suetonia Palmer is challenging the status quo for kidney disease treatment and helping millions of people with chronic kidney disease take back control of their lives.

Click image for hi-res. Photo: Dr Suetonia Palmer, University of Otago (credit: L’Oréal Australia/sdpmedia.com.au)
Click image for hi-res. Photo: Dr Suetonia Palmer, University of Otago (credit: L’Oréal Australia/sdpmedia.com.au)

Working from temporary facilities as Christchurch rebuilds, she is guiding doctors and policy makers across the world as they attempt to make the best decisions for their patients.

Continue reading Giving patients more control of their lives