Archives
Stopping parasite means more, safer meat
The world’s meat production could be lifted by 10 to 15 per cent if a vaccine can be found to combat the liver fluke.
This is the aim of a collaborative bioscience group at the new $288 million Centre for AgriBioscience (AgriBio).
An effective vaccine against liver fluke could not only boost meat production but would also lead to a large reduction in the amount of drugs given to livestock, says Prof Terry Spithill, who is co-director of AgriBio and based at La Trobe University.
Continue reading Stopping parasite means more, safer meat
Body’s power plants offer clues to Parkinson’s disease
How do the power plants of the cell—the mitochondria—use their defence mechanisms to fight diseases such as Parkinson’s disease? This debilitating disorder is caused by an accumulation of proteins that have folded incorrectly.
The misfolded proteins then clump together and form sticky, cell-damaging deposits called plaques.
“We know that mitochondria are at the centre of the aging process,” says Prof Nick Hoogenraad, executive director of the La Trobe Institute for Molecular Science (LIMS). Nick and his team have found a mechanism mitochondria use to remove the plaques that are prone to form as we age.
Continue reading Body’s power plants offer clues to Parkinson’s disease
Parkinson answers deep in the brain
A Parkinson patient who can walk again, and improved life for people with the behavioural disorder known as Tourette syndrome.
These are two of the results of a partnership between University of Queensland neurologist Prof Peter Silburn and neurosurgeon Dr Terry Coyne who have ventured deeper into the human brain than anyone else in the world.
Peter treats patients at St. Andrew’s Hospital in Brisbane using deep brain stimulation, a technique that uses electrodes to stimulate a region some 12 centimetres under the surface of the brain.
“There are 100 billion neurons in the brain and we can’t restore all of them. But the deep brain is like a telephone exchange—by stimulating this one section of the brain, you can unblock the flow of messages,” Peter says.
Continue reading Parkinson answers deep in the brain
Life’s work closer to saving lives
What began decades ago as the discovery of an antibody from mice that targets human cancer cells is now undergoing human trials in the US as the basis of a treatment for acute leukaemia.
The antibody targets a protein called EphA3, which is found in about half of all acute leukaemias as well as many other human cancers including a significant proportion of malignant melanomas, brain tumours and lung cancers. The antibody, called KB004, has been shown to kill certain types of cancerous tumours grown from human samples.
Continue reading Life’s work closer to saving lives
A step towards an everlasting battery
Imagine a future where recharging your tablet could be as easy as typing a tweet—where portable electronic devices power themselves without ever plugging into the grid.
Researchers at RMIT University, Melbourne have assessed the capacity of piezoelectric films—thin layers that turn mechanical pressure into electricity—to do this.
The study is the first to evaluate how piezoelectric thin films, a thousandth of a millimetre thick, perform at the molecular level, precisely measuring the level of electrical voltage and current—and therefore, power—that could be generated.
Continue reading A step towards an everlasting battery
OPAL reactor fingerprints Aboriginal ochre
A Flinders University chemist is using Australia’s OPAL research reactor at Lucas Heights in Sydney to investigate ancient Aboriginal Australian society.
Using the technique called neutron activation analysis, Dr Rachel Popelka-Filcoff can “geochemically fingerprint” Aboriginal ochre pigments from different locations, archaeological sites and artefacts.
As the geochemical composition of ochre varies with location, she can correlate each sample with its site of origin, gaining information on cultural practices, travel and exchange patterns, and the relationship of Aboriginal people to the landscape. “Ochre pigments are highly significant in Aboriginal culture,” says Rachel. “Cultural expression often requires a specific pigment. Applying ochre to an object such as a spear can transform both its colour and its cultural meaning.”
Dr Roman Dronov, also from Flinders, is using the reactor to study the formation of bacterial protein layers. He is applying what he finds to constructing a new type of biosensor based on these layers and porous silicon. These highly sensitive devices can rapidly detect trace amounts of molecules, such as environmental poisons and markers of disease—a great improvement on traditional analytical methods.
Continue reading OPAL reactor fingerprints Aboriginal ochre
Helping eyes to help themselves
Donor corneas conditioned with DNA before being transplanted into new eyes are already actively contributing to their own success in experimental animals such as sheep.
The DNA is inserted into the cells of the cornea after it has been harvested. Then, following implantation, it produces proteins that help overcome immunological rejection.
This is one of many strands of research aimed at increasing the success rates of corneal transplants and other eye disease treatments undertaken by Prof Keryn Williams at Flinders University.
Continue reading Helping eyes to help themselves
Mapping the seafloor from space
We know more about the topography of Mars than that of Earth because 70 per cent of our planet is covered by water.
Now University of Sydney PhD student Kara Matthews has used satellite data and GPlates, a computer package developed at the University, to create a complete digital map of the many geological features of the seafloor.
Fracture zones—the orange lines in the accompanying image—are deep linear scars on the seafloor that extend perpendicular to the boundaries where tectonic plates are moving apart, revealing up to 150 million years of plate movement. They are accompanied by huge ridges on the seafloor, rising up to 2 km above the abyssal plains, and valleys as deep as 8 km below sea level.
Continue reading Mapping the seafloor from space
Slide back in time and see the Himalayas form
Researchers in the School of Geosciences at the University of Sydney have developed a computer package that lets scientists record and study the Earth over geological time.
Their GPlates software, which they describe as “Google Earth with a time-slider,” contains powerful tools for modelling geological processes. Yet it is simple enough to use in schools or at home, and is freely available. By combining data on continental motion, fossils and sediments, for example, scientists can analyse changes in geography, ocean currents and climate over geological time.
Continue reading Slide back in time and see the Himalayas form