Protecting phones, robots and governments—partners in cybersecurity

Your smartphone’s Wi-Fi connections are fast and reliable thanks to the work of Australian astronomers in the 1990s.

Today, your phone is also being protected from cyberattacks by Australian software that works within the kernel of the phone’s operating system to protect it from hacking and software faults. The kernel is the most fundamental part of an operating system. It acts between the hardware and the applications.

Now Australian researchers are working to secure America’s growing fleets of autonomous machines, with ‘microkernel’ software known as seL4.

The new software is built on the work of researchers at the University of New South Wales and National ICT Australia (now CSIRO’s Data61 Group).

Continue reading Protecting phones, robots and governments—partners in cybersecurity

From jet engines to personalised surgical tools

The Monash scientists who led the creation of the world’s first 3D-printed jet engine in 2015 are now improving the design and cost of manufacturing medical implants, surgical tools, aerospace components, and more.

They’ve been working with surgeons to design tools for specific operations, to replace ‘one-size-fits-all’ tools currently available.

Continue reading From jet engines to personalised surgical tools

Distilling value from industrial waste

Hot and salty water is a common by-product of industries such as textiles, food and dairy production. But new technology that allows this water to be purified, collected and re-used on site has been developed by Victorian scientists.

Their compact module, smaller than the size of a human, can transform a wasteful industrial operation into an efficient process that recycles energy, water and materials.

“We’ve calculated that our module can reduce water use by more than 90 per cent in some industrial settings,” Professor Mikel Duke says.

Continue reading Distilling value from industrial waste

Designing the coolest and most efficient tropical houses

Traditional buildings in Indonesia make use of ‘passive’ cooling techniques. Being well ventilated, raised off the ground, and with shady verandas, their design allows them to stay cool in a tropical climate without air conditioning. The classic timber ‘Queenslander’ house also follows a similar design.

Now architects and engineers from both countries are getting together to compare notes on such designs and materials.

Continue reading Designing the coolest and most efficient tropical houses

The short lives of hard-living, fast burning, high mass stars

2015 L'Oréal-UNESCO For Women in Science Fellow Shari Breen (Credit: L'Oréal Australia) Dr Shari Breen, astronomer, CSIRO, Sydney

We are made of star stuff. The nitrogen in our DNA, the calcium in our teeth and the iron in our blood were all made in high mass stars that burnt briefly and brightly before exploding.

Dr Shari Breen is using ‘The Dish’ at Parkes and a network of international telescopes to understand the life cycle and evolution of these stars. For her the 1,000 tonne Parkes radio telescope is an old friend that creaks and grumbles as she guides it across the sky, hunting for high mass stars.

She will use her L’Oréal-UNESCO For Women in Science Fellowship to develop her use of masers (laser-like beams of intense radio waves) to investigate these stars.

Continue reading The short lives of hard-living, fast burning, high mass stars

Changing lives: Australia–Japan science links

To read about Japan-Australia innovation collaborations—including searching for new malaria drugs, giant robot trucks carrying ore, and chewing gum that reverses tooth decay—click here.

Japanese science changing Australia

The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD. Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.

Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow
Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow

Fundamental science discoveries are bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps—lasting a lifetime and using a fraction of the energy.

In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using induced pluripotent stem cells to develop stem cell medicines.

Continue reading Changing lives: Australia–Japan science links

Making plastics, mining, and engineering

2014 ATSE Clunies Ross Medals

John Nutt helped design and analyse the sails of the iconic Sydney Opera House early in a career that saw him pioneer the use of computers in engineering, and contribute to the first fire code for buildings.

Kevin Galvin’s invention of the Reflux Classifier has generated hundreds of millions of dollars in benefits to the Australian economy, and revolutionised mineral processing around the world. It maximises mineral recovery by improving the recovery of fine, but still valuable, particles. Continue reading Making plastics, mining, and engineering

Australian Academy of Science medals

Harry Messel has been a powerful force in science education—from the Physics Foundation to textbooks and his establishment of International Science Schools. He was awarded the Academy Medal.

Simon McKeon is a prominent business leader and philanthropist who has made extensive contributions to Australian science and innovation including chairing the CSIRO Board and the agenda-setting McKeon report into medical research in Australia. He was awarded the Academy Medal.

The life and death of cells: Jerry Adams has advanced understanding of cancer development, particularly of genes activated by chromosome translocation in lymphomas. By clarifying how the Bcl-2 protein family controls the life and death of cells, he and his colleagues at the Walter and Eliza Hall Institute of Medical Research have galvanised the development of a promising new class of anti-cancer drugs. Jerry was awarded the 2014 Macfarlane Burnet Medal. Continue reading Australian Academy of Science medals

Changing lives: Australia–Japan science links

Japanese science changing Australia

The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD.

Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow
Nobel Laureate Shinya Yamanaka changed stem cell science. Credit: Gladstone Institutes/Chris Goodfellow

Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.

Fundamental science discoveries are now bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps— lasting a lifetime and using a fraction of the energy.

In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using his induced pluripotent stem cells to develop stem cell medicine.

Australian science changing Japan

It’s not a one way trade. Japanese lives are being improved by Australian inventions such as the bionic ear, gum that repairs tooth decay, sleep disorder treatments, lithium to treat bipolar disorder, aircraft black boxes, and anti-flu drugs, which are all in daily use in Japan.

And when you connect to a fast and reliable wi-fi network you can thank Australian astronomers who were searching for black holes and created tools for cleaning up radio waves.

Collaborating for the future

Today there are hundreds of thriving Australia–Japan research collaborations, many of which will have a profound impact on our lives in the years ahead.

Over the past five years, Japan has consistently placed within the 10 countries that have the highest number of collaborations with Australian researchers on Australian Research Council–funded projects. The ARC reports that the most popular disciplines for collaboration with Japan are: material engineering; biochemistry and cell biology; atomic, molecular, nuclear, particle and plasma physics; astronomical and space sciences and plant biology.

Other collaborations

Seeing every cell in a whole adult brain
Scientists from RIKEN, the University of Tokyo, JAST, and the Queensland University of Technology have developed CUBIC—a technique for rapidly imaging the brain. They believe it will be scalable to whole bodies.

Biomedical applications for ‘magic crystals’
CSIRO and Osaka Prefecture University are developing biomedical applications for the massively absorbent metal–organic framework crystals developed by CSIRO.

How our phones track us
Billions of us now have phones that tell us and others where we are and what’s around us. A team from RMIT, Intel, Fudan University and Keio University is exploring the cross-cultural and intergenerational study of this phenomenon, and the implications for privacy, in three key sites: Tokyo, Shanghai and Melbourne.

For more information: Science in Public, www.scienceinpublic.com.au/stories/japan