A new brain implant could deliver anti-epilepsy drugs straight to where they’re needed and, in future, on demand. This will be particularly helpful for the 30 per cent of epilepsy patients who suffer severe side-effects, such as nausea, rashes, weight change and dizziness, from their medication, leaving them unable to be treated.
The implant is a biodegradable polymer that ARC Centre of Excellence for Electromaterials Science associate Bionics program leader A/Prof Simon Moulton compares to the types of polymers used in dissolvable stitches. Continue reading On-demand epilepsy drug→
Neutrons and native frogs are an unlikely but dynamic duo in the battle against antibiotic-resistant bacteria, commonly known as superbugs, recent research has shown.
The skin secretions of the Australian green-eyed and growling grass frogs contain peptides (small proteins) that help frogs fight infection. Researchers hope these peptides will offer a new line of defence against a range of human bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Continue reading Frog peptides versus superbugs→
Electrodes made of diamond are helping Melbourne researchers build a better bionic eye.
Some types of blindness are caused by diseases where the light-sensing part of the retina is damaged, but the nerves that communicate with the brain are still healthy—for example, retinitis pigmentosa and age-related macular degeneration.
Dr David Garrett and his colleagues at the Melbourne Materials Institute at the University of Melbourne are using diamond to build electrodes that can replace the light-sensing function of the retina: they deliver an electrical signal to the eye via a light-sensing camera.
Twenty years ago doctors thought epilepsy was caused by injuries or tumours but, thanks to the work of a Melbourne paediatrician, we now know that there’s a large genetic factor.
Prof Ingrid Scheffer, a paediatric neurologist at the Florey Neuroscience Institutes and the University of Melbourne, has spent the last 20 years looking at the genetics of epilepsy, particularly in children.
We now know that genes play a large role and that’s opened the way to better diagnosis, treatment, counselling, and potential cures.
In particular, Ingrid’s team and her collaborators at the University of South Australia have discovered that one kind of inherited infant epilepsy is due to a single letter change in the genetic code.
It’s much better to give new glasses than recycled glasses if you want to help one of the 640 million people who are vision-impaired or blind simply for the lack of an eye examination and appropriate glasses.
This is according to a new international study led by Australian researchers.
Dr David Wilson, research manager in the Asia-Pacific for International Centre for Eyecare Education and head author of a major paper on the topic, says although you might feel good sending your old reading glasses to a developing country, it is far better to give $10 for an eye examination and a new pair of glasses—and that’s more likely to strengthen the ability of these communities to help themselves. Continue reading Donating used eyeglasses is a poor use of resources→
Prof Graeme Clark changed the way we thought about hearing when he gave Rod Saunders the first cochlear implant in 1978—now he might just do it again.
Back then, Graeme brought together a team of engineers and medical personnel; now he’s trying to reveal exactly how the brain is wired for sound—by bringing together software specialists and experts on materials that can interface with the brain.
“We’re aiming to get closer to ‘high fidelity’ hearing for those with a cochlear implant,” says Graeme, now distinguished researcher at NICTA and laureate professor emeritus at the University of Melbourne. “This would mean they could enjoy the subtlety of music or the quiet hum of a dinner party.”
The long-term survival chances of patients with breast cancer plummet if the cancer recurs or spreads to other parts of the body in the process known as metastasis.
So the National Breast Cancer Foundation recently funded a five-year, $5 million National Collaborative Research Program to investigate metastasis and discover potential drugs to stop or slow it. The EMPathy Breast Cancer Network program was also charged with finding ways of diagnosing metastasis before it occurs. The research is highly dependent on the latest sequencing technology and demands the massive computer power and sophisticated data handling techniques of modern bioinformatics. Continue reading Supercomputer probes cancer crisis point→
Australia’s scientists are among the most productive in the region. That’s the picture that emerges from the Nature Publishing Index 2011 Asia-Pacific released in March 2012
Australia ranks second only to Singapore in terms of science output per capita and per scientist in the Index, which measures the publication of research articles in Nature research journals by Asia-Pacific nations and institutions. Singapore and Australia are also first and second in the Asia-Pacific respectively in terms of GDP per capita. Continue reading Australian science’s place in Asia→
Queensland scientists are helping radiologists to spot the more subtle signs of breast cancer, using computer tools and magnetic resonance imaging (MRI).
Currently MRI allows radiologists to detect lumps or other growths by creating a 3D anatomical image of the breast.
Prof Stuart Crozier and his team at the University of Queensland have developed a computer tool that improves MRI detection by spotting more subtle indicators of cancer.
“When cancers are just starting to form, they form abnormal blood vessels very early, to feed their rapid cell division,” Stuart says.
“By seeing how certain contrast agents move through the tissue, we can pick up the formation of these blood vessels.”
This works towards solving two issues with conventional MRIs.
First, it should reduce the number of false positive results and therefore the number of women put through biopsies of benign tumours.
Second, this should catch tumours earlier, not just when tumours are big enough to discern visually.
“The goal is to assist radiologists to identify areas of cancer risk that may not be obvious on conventional images,” Stuart says.
Stuart, a Fellow of the Australian Academy for Technological Sciences and Engineering (ATSE), was recently presented with a 2012 Clunies Ross Award for his contributions to the engineering of magnetic resonance imaging (MRI) technology.
The research, funded as an Australian Research Council’s Discovery Project, is now undergoing trials with 140 women at private radiology firm Queensland X-ray.
Photo: Contrast-enhanced MRI of a breast.
Credit: Yaniv Gal
Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue.
Credit: Kim Nunes
Prostate cancers are made up of hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to a study published in Cancer Research and supported by Movember. More below. Also Australian science discoveries you may have missed from the past week. Heart cells growing in a test-tube – Melbourne How birds […]
Hundreds of Aussie science achievements that you can share in speeches, posts and publications