Tag Archives: silicon

Quantum computing in silicon hits 99 per cent accuracy

UNSW Sydney-led research paves the way for large silicon-based quantum processors for real-world manufacturing and application.

Australian researchers have proven that near error-free quantum computing is possible, paving the way to build silicon-based quantum devices compatible with current semiconductor manufacturing technology.

“Today’s publication in Nature shows our operations were 99 per cent error-free,” says Professor Andrea Morello of UNSW, who led the work, with partners in the US, Japan, Egypt, UTS and the University of Melbourne.

“When the errors are so rare, it becomes possible to detect them and correct them when they occur. This shows that it is possible to build quantum computers that have enough scale, and enough power, to handle meaningful computation.

Continue reading Quantum computing in silicon hits 99 per cent accuracy

Quantum computing in silicon

A French-Australian collaboration is setting out to make silicon quantum computing a practical reality.

“I’m excited by our technology because it has the potential to change the world,” says Professor Andrew Dzurak of the University of New South Wales, the quantum computing expert who leads the Australian side of the partnership.

Andrew and his colleagues hope that their work will enable computing capabilities that are out of reach today and perhaps also result in the first universal quantum computer. Continue reading Quantum computing in silicon

Joining the race for better, safer lithium batteries

Commercialising the technology or the next generation of lithium batteries is the target for a team of Indonesian and Australian scientists, who are backed by battery manufacturer PT Nipress Tbk.

Lithium batteries allow for a large amount of energy to be packed into a small space. But they’re costly compared to single use ‘disposable’ batteries, and have special requirements for transportation and storage.

Continue reading Joining the race for better, safer lithium batteries

Build it and they will come – chip design creates computer blueprint

The design of a 3D silicon chip architecture clears another hurdle in the international race to build quantum computers.

Researchers at the University of Melbourne and the University of New South Wales (UNSW) have designed a chip based on single atom quantum bits, creating a blueprint for building a large-scale silicon quantum computer.

Continue reading Build it and they will come – chip design creates computer blueprint

A path to large-scale manufacturing

The development of a two-quantum bit (qubit) logic gate in silicon heralds the possibility of moving quantum computers from experimental lab to large-scale manufacture much faster than other global research efforts.

Andrew (right) and his colleague Dr Menno Veldhorst in the UNSW laboratory. Credit: Paul Henderson-Kelly/University of New South Wales
Andrew (right) and his colleague Dr Menno Veldhorst in the UNSW laboratory.
Credit: Paul Henderson-Kelly/University of New South Wales

Scientia Professor Andrew Dzurak and his team have created a two-qubit gate – a critical component, which allows qubits to talk to each other and will form the basis for a quantum computer chip.

It’s an advance that the UK’s premier physics magazine, Physics World, declared one of the top 10 breakthroughs of 2015.

Continue reading A path to large-scale manufacturing

Towards the first quantum computer – in silicon

Across the world, the race is on to develop the first quantum computer and an Australia research centre is at the front of the pack.

The Australian Government, Telstra and the Commonwealth Bank of Australia have recently recognised the pole position of the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) by investing $46 million towards a targeted goal of realising a 10-qubit quantum integrated circuit in silicon within the next five years.

In this feature we explore some of the Centre’s advances in quantum information research.

For more information:
Centre for Quantum Computation and Communication Technology
Tony Raeside
tony.raeside@unsw.edu.au

From little things, big things grow

Michelle Simmons’ work building silicon atomic-scale devices is paving the way towards a quantum computer with the capacity to process information exponentially faster than current computers.

She is also Director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, acknowledged to be a world-leader in the field of quantum computing—which uses the spin, or magnetic orientation, of individual electrons or atomic nuclei to represent data.

Michelle Simmons is one of only 11 Australians elected as a member of the American Academy of Arts and Sciences. Credit: UNSW
Michelle Simmons is one of only 11 Australians elected as a member of the American Academy of Arts and Sciences. Credit: UNSW

In the past five years, Michelle’s research group and collaborators have made a number of notable advances. They have fabricated the world’s first single-atom transistor in single-crystal silicon, and the world’s narrowest conducting wires, also in silicon, just four atoms wide and one atom tall with the current-carrying capacity of copper.

Continue reading From little things, big things grow

Andrea Morello: Quantum computing becomes more than just spin

People have speculated about the potential of quantum computers for decades—how they would make child’s play of constructing and testing new drugs, searching through huge amounts of data and ensuring security of information.

Andrea Morello. Credit: Prime Minister’s Prizes for Science/Bearcage

This scenario may be coming true in a high-tech basement at the University of New South Wales.

Continue reading Andrea Morello: Quantum computing becomes more than just spin

Spray-on solar cells

Imagine a power station that’s literally sprayed onto your roof —and could match the colour of your tiles.

GERRY WILSON IS DEVELOPING SPRAY-ON SOLAR CELLS. CREDIT: ISTOCKPHOTO

Thin film solar cells are thinner, cheaper and more versatile than the traditional silicon solar panels. Spray-on solar is a next step in the evolution of on-site power generation.

“These cells can be made with semiconductor dye materials, so you can match them to any colour or pattern you like—they’ll just convert that part of the solar spectrum into electricity. In the future we could have billboards that act as solar panels,” says Dr Gerry Wilson of CSIRO’s flexible electronics team.

Continue reading Spray-on solar cells