Tag Archives: imaging

Your first hug

Most people remember their first kiss but Victorian scientists have discovered that your first hug is much further back than you think.

The arm-like filopodia ‘hug’ the embryo’s cells, squeezing them into shape. Credit: EMBL Australia

Nicolas Plachta and his team at the Australian Regenerative Medicine Institute have discovered that embryos, when only eight cells in size, develop arm-like structures that ‘hug’ the cells into shape, helping to determine an embryo’s ultimate success.

The study, which was published in the journal Nature Cell Biology, used live imaging and fluorescent markers to capture the action in mouse embryos.

Continue reading Your first hug

Shine on you tiny diamond

Tiny diamonds have been used to track single atoms and molecules inside living cells.

Photo: Lloyd Hollenberg’s team are using a nanodiamond sensor to explore inside a living human cell. Credit: David Haworth, University of Melbourne

A University of Melbourne team has developed a device that uses nanoscale diamonds to measure the magnetic fields from a living cell’s atoms and molecules, with resolution a million times greater than current magnetic resonance imaging.

Continue reading Shine on you tiny diamond

Putting off joint replacement

Advanced medical imaging has allowed Tasmanian scientists to trial new therapies for osteoarthritis and to potentially delay the need for joint-replacement surgery.

Photo: Hip replacement surgery may not be needed with Graeme Jones’s new therapy for osteoarthritis. Credit: NIADDK, 9AO4 (Connie Raab-contact); NIH

Graeme Jones and his team from the Menzies Research Institute used dual-energy X-ray absorptiometry to see what was happening to a joint’s internal structure as osteoarthritis developed, allowing them to spot changes long before a conventional X-ray could.

Continue reading Putting off joint replacement

Fibre optics: from cables to colon health

A new fibre optic medical tool is revolutionising our understanding of serious but socially embarrassing digestive illnesses, such as constipation, diarrhoea and irritable bowel syndrome. Thanks to this device, medical scientists can see for the first time the coordinated, fine and complex muscular activity of the human digestive system in action.

FIBRE OPTIC TECHNNOLOGY IS HELPING JOHN ARKWRIGHT UNDERSTAND OUR DIGESTIVE FUNCTION. CREDIT: ISTOCKPHOTO

CSIRO optical physicist Dr John Arkwright, together with Dr Philip Dinning, of Flinders University, collected a 2011 Eureka Prize for their creation of the fibre optic catheter, which gleans information about digestive function by measuring pressure.
Continue reading Fibre optics: from cables to colon health

Supercomputers bring theory to life

A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.
A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.

Over aeons of time cosmic gas comes together, stars begin to form, supernovae explode, galaxies collide. And computational astronomers can watch it all unfold inside a supercomputer. That’s the kind of work post-doctoral fellows Rob Crain and Greg Poole are doing at the Swinburne Centre for Astrophysics and Supercomputing. Continue reading Supercomputers bring theory to life

Recording the impact of a super-massive black hole

PARTICLES EMITTING RADIO WAVES STREAM MILLIONS OF LIGHT-YEARS INTO SPACE FROM THE HEART OF THE GALAXY CENTAURUS A. CREDIT: ILANA FEAIN, TIM CORNWELL & RON EKERS (CSIRO). ATCA NORTHERN MIDDLE LOBE POINTING COURTESY R. MORGANTI (ASTRON), PARKES DATA COURTESY N. JUNKES (MPIFR).
PARTICLES EMITTING RADIO WAVES STREAM MILLIONS OF LIGHT-YEARS INTO SPACE FROM THE HEART OF THE GALAXY CENTAURUS A. CREDIT: ILANA FEAIN, TIM CORNWELL & RON EKERS (CSIRO). ATCA NORTHERN MIDDLE LOBE POINTING COURTESY R. MORGANTI (ASTRON), PARKES DATA COURTESY N. JUNKES (MPIFR).

At the centre of a nearby galaxy lurks an object of huge interest, a super-massive black hole. CSIRO scientists have used their radio telescopes to take a picture of the galaxy surrounding it, a task some thought could not be done, because of the sheer size and radio brightness of the scene. The image of Centaurus A took about 1,200 hours of observations and a further 10,000 hours of computer processing to put together, but the work is already beginning to bear fruit.

“We didn’t generate this image just to make a pretty picture,” says lead scientist Ilana Feain of CSIRO Astronomy and Space Science. “We want to understand in detail how the energy from super-massive black holes influences the formation and evolution of their host galaxies.” Continue reading Recording the impact of a super-massive black hole

A student’s out-of-this­-world experience

DANIEL TRAN RECEIVING A FRAMED PRINT OF HIS OBJECT OF FASCINATION, THE GLOWING EYE NEBULA.CREDIT: DAVID MARSHALL.
DANIEL TRAN RECEIVING A FRAMED PRINT OF HIS OBJECT OF FASCINATION, THE GLOWING EYE NEBULA.CREDIT: DAVID MARSHALL.

Daniel Tran, a year ten student at PAL College in Cabramatta, a suburb in southwestern Sydney, has photographed the Glowing Eye Nebula, a ghostly cloud of gas that has lasted at least 3,000 years and surrounds a dying star some 7,000 light years from Earth.

Daniel took the photograph using one of the world’s biggest telescopes—the giant 8.1­metre Gemini South telescope in Chile, in which Australia has a 6.2 per cent share. His precious hour’s worth of observing time on the telescope was the 2009 prize for winning the Australian Gemini School Astronomy Contest, which aims to inspire the next generation of Australian astronomers by involving students in the process of real astronomy at a major professional facility. Continue reading A student’s out-of-this­-world experience

Bringing undiscovered Earths into focus

USING A NEW OBSERVATORY BEING BUILT NORTH OF HOBART, RESEARCHERS AT THE UNIVERSITY OF TASMANIA ARE GEARING UP TO FIND WHETHER THE UNIVERSE HARBOURS MORE PLANETS LIKE EARTH. CREDIT: JOHN GREENHILL, UNIVERSITY OF TASMANIA.
USING A NEW OBSERVATORY BEING BUILT NORTH OF HOBART, RESEARCHERS AT THE UNIVERSITY OF TASMANIA ARE GEARING UP TO FIND WHETHER THE UNIVERSE HARBOURS MORE PLANETS LIKE EARTH. CREDIT: JOHN GREENHILL, UNIVERSITY OF TASMANIA.

How many of the planets scattered across the Universe have the potential to harbour life? An observatory being built in Tasmania is poised to help answer just that question.

Astronomers at the University of Tasmania (UTas) currently use the Mount Canopus Observatory in Hobart to search for Earth-like planets orbiting distant suns—but the growing city is compromising the observatory’s view of space. “Light is driving us away,” says John Greenhill, the Observatory’s director. Continue reading Bringing undiscovered Earths into focus

Keck telescope dons a mask

A FALSE-COLOUR COMPOSITE IMAGE OF 11 FRAMES SHOWING THE 8-MONTH CIRCULAR ROTATION OF THE BINARY STAR, WOLF-RAYET 104. CREDIT: PETER TUTHILL.
A FALSE-COLOUR COMPOSITE IMAGE OF 11 FRAMES SHOWING THE 8-MONTH CIRCULAR ROTATION OF THE BINARY STAR, WOLF-RAYET 104. CREDIT: PETER TUTHILL.

It seems counterintuitive, but restricting the amount of light that reaches a telescope can sharpen up its output. The technique will be used on NASA’s successor to the Hubble Space Telescope: the James Webb Space Telescope. But it is already proving its worth here on Earth.

Images of the binary star known as Wolf-Rayet 104 (WR104), published in 2008 by Peter Tuthill of the University of Sydney, reveal the power of the new technique, which is known as aperture masking. WR104 should be difficult to see because it is in a deep cloud of dust, but Peter and his colleagues used aperture masking when observing the star with the Keck telescope in Hawai’i. The mask leads to sharper images because it cuts down complexity and makes the data easier to process and rid of error. Continue reading Keck telescope dons a mask

SkyMapper’s 268-megapixel camera

On a mountaintop in northern New South Wales sits a new telescope equipped with Australia’s largest digital camera. The Australian National University’s (ANU) SkyMapper facility has been established at Siding Spring Observatory to conduct the most comprehensive optical survey yet of the southern sky.

Fully automated, the telescope is measuring the shape, brightness and spectral type of over a billion stars and galaxies, down to one million times fainter than the eye can see.

SKYMAPPER AT SIDING SPRING, NORTHERN NEW SOUTH WALES. CREDIT: AUSTRALIAN NATIONAL UNIVERSITY.

Continue reading SkyMapper’s 268-megapixel camera