DNA barcodes could help farmers and conservationists identify wanted and unwanted grasses.
Identifying grasses is difficult especially when they’re not flowering. But identification is important. Australia’s agriculture and ecology are threatened by invading grasses, such as Chilean needle grass (Nassella neesiana) and serrated tussock (N. trichotoma). And efforts to re-introduce native grasses can be hampered if you can’t tell the grasses apart.
What if the very thing that assists a fetus to grow in the womb could also prevent disease in a fully grown adult?
Monash Institute of Medical Research scientists have discovered that stem cells from the womb have the potential to treat inflammatory diseases such as lung fibrosis and liver cirrhosis in both children and adults.
An Australian researcher is leading an international team of scientists developing a clean source of energy from microalgae. The team have developed one algae that not only makes oil for biodiesel production but also generates hydrogen. Commercial hydrogen production uses fossil fuels and produces carbon dioxide.
Blood tests using nanoparticles carrying molecules which can detect breast cancer biomarkers could save millions of lives and open the way to mass screening for many cancers.
Prof. Matt Trau, of the Australian Institute for Bioengineering & Nanotechnology at the University of Queensland, and his team are using a combination of nanotechnology and molecular biology in the project, funded by a five-year $5 million grant from the National Breast Cancer Foundation.
Researchers in Melbourne will trial a new procedure to reconstruct breasts in patients following mastectomy. The procedure will use the women’s own stem cells instead of silicon.
Focusing on the treatment and recovery of women with breast cancer, the new technique known as Neopec involves the insertion of a customised biodegradable chamber which is contoured to match the woman’s natural breast shape. The chamber acts as a scaffold within which the woman’s own stem cells are used to grow permanent breast fat tissue.
Melbourne scientists gave Australia the first practical bionic ear. Today, over 180,000 people hear with the help of the cochlear implant.
Now, The University of Melbourne is a key member in an Australian consortium developing an advanced bionic eye that will restore vision to people with severe vision loss. This device will enable unprecedented high resolution images to be seen by thousands of people with severely diminished sight, allowing them to read large print and recognise faces.