Tag Archives: astronomy

Measuring the Universe from start to finish

THE HUBBLE SPACE TELESCOPE CAN BE USED TO TAKE MEASUREMENTS THAT WILL HELP ANSWER SOME OF THE BIGGEST QUESTIONS ABOUT THE UNIVERSE. CREDIT: NASA/STSCI.
THE HUBBLE SPACE TELESCOPE CAN BE USED TO TAKE MEASUREMENTS THAT WILL HELP ANSWER SOME OF THE BIGGEST QUESTIONS ABOUT THE UNIVERSE. CREDIT: NASA/STSCI.

Scientific puzzles don’t come much bigger than these. How old is the Universe? How big is it? And what is its ultimate fate?

A single number, Hubble’s constant, is the key that can unlock all of those questions, but it’s a number that has proved notoriously hard to accurately measure. Hubble’s constant is the rate at which the Universe is expanding. The first team to accurately make that measurement was co-led by Jeremy Mould, now a professor at Swinburne University of Technology and professorial fellow at the University of Melbourne. Continue reading Measuring the Universe from start to finish

Ten times more galaxies

THE 3.9 METRE ANGLO­-AUSTRALIAN TELESCOPE IS COLLECTING OPTICAL GALAXY DATA FOR THE GAMA SURVEY. CREDIT: BARNABY NORRIS.

A new ‘super survey’ is producing the largest database of galaxy measurements, spanning the last five billion years of cosmic history. The International Galaxy and Mass Assembly (GAMA) project is combining data from ground-and space-based observatories to measure the ‘haloes’ of dark matter that surround galaxies.

“The Cold Dark Matter (CDM) model of cosmology makes predictions about how galaxies cluster and, in many cases, collide and merge,” says Andrew Hopkins, a GAMA team member. “Our measurements of the speeds of galaxies will reveal the distribution of dark matter, and enable us to test the CDM model.”

Continue reading Ten times more galaxies

Spinning galaxies reveal missing matter

PHOTO: DARK MATTER DOMINATES GALAXIES AND GROUPS OF GALAXIES, YET ITS IDENTITY REMAINS UNKNOWN. CREDIT: DAVID MALIN, AUSTRALIAN ASTRONOMICAL OBSERVATORY.
PHOTO: DARK MATTER DOMINATES GALAXIES AND GROUPS OF GALAXIES, YET ITS IDENTITY REMAINS UNKNOWN. CREDIT: DAVID MALIN, AUSTRALIAN ASTRONOMICAL OBSERVATORY.

Australian astronomers have long been contributing to our understanding of a strange cosmological phenomenon—the Universe’s missing matter.

In the early 1970s, Ken Freeman of the Australian National University (ANU) determined that spiral galaxies must contain more matter than we can see. He postulated that dark matter—an invisible material first proposed 40 years earlier—must make up at least half the mass of these galaxies. Now, patches of dark matter are thought to be scattered across the Universe, playing a major role in holding galaxies and groups of galaxies together. Continue reading Spinning galaxies reveal missing matter

Galaxies point the way to dark energy

WiggleZ will hunt for dark energy in the faint patterns of 293,000 distant galaxies. Credit: NASA / ESA / HUDF09 Team

A project to produce more than double the number of galaxy distance measurements than all other previous surveys, could lead to an explanation of one of nature’s biggest mysteries—whether dark energy, an invisible force that opposes gravity, has remained constant or changed since the beginning of time.

Continue reading Galaxies point the way to dark energy

Fresh Science 2010

Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.

More at www.freshscience.org.au

Print your own lasers, lights and TV screens

Print your own lasers, lights and TV screens
Jacek Jasieniak sprinkling quantum dots. Credit: Jacek Jasieniak

Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.

Cling wrap captures CO2
Colin Scholes operates a test rig for his carbon capture membrane. Credit: CO2 CRC

Cling wrap captures CO2

High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”

Continue reading Fresh Science 2010

No moving parts – a new kind of radio telescope

Murchison Widefield Array
The Murchison Widefield Array is one of the first telescopes with no moving parts. Credit: David Herne, ICRAR

Far outback in Western Australia, at the Murchison Radio Astronomy Observatory located on Boolardy Station, 315 km north-east of Geraldton, 32 tiles each carrying 16 dipole antennas have begun to collect scientific data on the Sun. At the same time they are providing engineering information to be used to extend the facility to a much bigger array of 512 tiles – the Murchison Widefield Array (MWA).

Continue reading No moving parts – a new kind of radio telescope

Making light work of photonic chip fabrication

Macquarie University laser physicists are part of a consortium developing a micro-processing platform that will revolutionise photonic chip fabrication. This technology has implications for a diverse range of applications such as fibre-to-thehome (FTTH), smart sensor arrays for aircraft, biosensing and astronomy.

Continue reading Making light work of photonic chip fabrication

L’Oréal Fellow looking for dark energy

Tamara Davis is looking for dark energy. Credit: timothyburgess.net
Tamara Davis is looking for dark energy. Credit: timothyburgess.net

In 1998 astronomers made an astonishing discovery—the expansion of the Universe is accelerating. The discovery required a complete rethink of the standard model used to explain how the Universe works.

“Now we know that stars, planets, galaxies and all that we can see make up just four per cent of the Universe,” says Dr Tamara Davis, a University of Queensland astrophysicist.

“About 23 per cent is dark matter. The balance is thought to be dark energy, which we know very little about.”

Continue reading L’Oréal Fellow looking for dark energy

Rapid expansion in NZ and WA astronomy

Teams from Australia, India and North America are collaborating to creat the Murchison Widefield Array Radio Telescope. Credit: David Herne, ICRAR
Teams from Australia, India and North America are collaborating to create the Murchison Widefield Array radio telescope. Credit: David Herne, ICRAR

Western Australia’s International Centre for Radio Astronomy Research (ICRAR) is only three months old but is rapidly expanding—much like the early Universe. ICRAR’s scientists have ambitious projects ahead contributing to global science and engineering through the SKA.

Continue reading Rapid expansion in NZ and WA astronomy

Australia and New Zealand—the home of next-generation radio astronomy?

Artist's impression of the Australian SKA Pathfinder currently being built in outback Western Australia. Credit: Swinburne Astronomy Productions/CSIRO
Artist’s impression of the Australian SKA Pathfinder currently being built in outback Western Australia. Credit: Swinburne Astronomy Productions/CSIRO

Imagine a telescope so revolutionary that in one week it will gather more information than that contained in all the words spoken in human history.

The Square Kilometre Array, or SKA, will be the world’s most powerful radio telescope and will dramatically increase mankind’s understanding of the universe.

Continue reading Australia and New Zealand—the home of next-generation radio astronomy?