Dr Benjamin Kile of the Walter and Eliza Hall Institute for Medical Research in Melbourne has found why the blood cells responsible for clotting—platelets—have a short shelf life at the blood bank.
There’s a molecular clock ticking away inside them that triggers their death. He’s also discovered a gene critical for the production of blood stem cells in our bone marrow that happens to be responsible for a range of cancers.
These major discoveries earned Ben the 2010 Science Minister’s Prize for Life Scientist of the Year. Now he is trying to use them to extend the life of blood bank products, and get to the heart of some of the big questions in cancer. Continue reading The life and death of blood cells→
Keeping electronics cool in high power applications such as telecommunications and building electronics on the nanoscale are two areas where there is an alternative to traditional silicon—electronics using diamond. Continue reading Diamonds for extreme electronics→
The world’s meat production could be lifted by 10 to 15 per cent if a vaccine can be found to combat the liver fluke.
This is the aim of a collaborative bioscience group at the new $288 million Centre for AgriBioscience (AgriBio).
An effective vaccine against liver fluke could not only boost meat production but would also lead to a large reduction in the amount of drugs given to livestock, says Prof Terry Spithill, who is co-director of AgriBio and based at La Trobe University. Continue reading Stopping parasite means more, safer meat→
How do the power plants of the cell—the mitochondria—use their defence mechanisms to fight diseases such as Parkinson’s disease? This debilitating disorder is caused by an accumulation of proteins that have folded incorrectly.
The misfolded proteins then clump together and form sticky, cell-damaging deposits called plaques.
“We know that mitochondria are at the centre of the aging process,” says Prof Nick Hoogenraad, executive director of the La Trobe Institute for Molecular Science (LIMS). Nick and his team have found a mechanism mitochondria use to remove the plaques that are prone to form as we age.
Imagine a future where recharging your tablet could be as easy as typing a tweet—where portable electronic devices power themselves without ever plugging into the grid.
Researchers at RMIT University, Melbourne have assessed the capacity of piezoelectric films—thin layers that turn mechanical pressure into electricity—to do this.
The study is the first to evaluate how piezoelectric thin films, a thousandth of a millimetre thick, perform at the molecular level, precisely measuring the level of electrical voltage and current—and therefore, power—that could be generated. Continue reading A step towards an everlasting battery→
An Australian invention is making it cheaper, quicker and safer to manufacture the radioactive tracers used in latest medical imaging techniques to track down increasingly smaller clusters of cancer cells.
Like preparing a cake in a mixing bowl, the chemical reactions to make the tracers involve putting the ingredients together in the right proportions. The next generation of tracers can have a more complex recipe—and so can be more difficult to produce using just one ‘mixing bowl’ at a time. Continue reading Two steps forward for cancer detection→
There’s a new diagnostic tool being developed to target melanoma, the deadly form of skin cancer with which more than 10,000 Australians are diagnosed each year.
It’s a chemical compound designed to highlight small traces of these cancer cells in the body.
Melanoma occurs when the cells that make melanin, the dark pigment normally found in the skin, become cancerous. Melanoma cells often spread elsewhere in the body before the primary tumours are detected and removed surgically. Clusters of these melanoma cells can be hard to detect before they grow into tumours by which time they are often incurable. Continue reading Unmasking melanoma early→
Four of Australia’s most accomplished scientists have been elected to the oldest scientific academy in continuous existence, the Royal Society of London.
Prof Ian Frazer, Prof Alan Cowman, Prof Mark Randolph and Dr Patrick Tam join 40 other scientists to be elected to the Royal Society in 2011, which celebrated its 350th anniversary last year.
Australian researchers have invented a small, smart, self-managed hearing aid that outperforms most conventional hearing aids for less than half the price.
It uses technology first developed for Australia’s bionic ear, and is so simple to set up that most users can buy one over the internet and fit it themselves.
That brings the cost down to between $1,000 and $1,500, or less than $3,000 for a pair.
Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.
Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.
High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”