Laser therapy to fight early signs of eye disease

Around fifteen per cent of people aged in their fifties who think their eyes are fine will show the early signs of age-related macular degeneration (AMD) if tested.

A scan reveals bleeding inside the eye due to age-related macular degeneration. CREDIT: CERA.
A scan reveals bleeding inside the eye due to age-related macular degeneration. CREDIT: CERA

It is Australia’s leading cause of blindness and there is no way to stop it progressing even when detected in its earliest phase.

“There have been advances in treatment but that’s at the end stage,” says Prof Robyn Guymer, who heads the Macular Research Unit at the Centre for Eye Research Australia. Continue reading Laser therapy to fight early signs of eye disease

Car makers queuing to see Melbourne ROACH

Car manufacturers are queuing up to meet the Melbourne makers of the world’s smallest and cheapest automotive radar system.

The CMOS chip at the heart of ROACH. Credit: Luan Ismahil, NICTA
The CMOS chip at the heart of ROACH. Credit: Luan Ismahil, NICTA

The Radar on a Chip (ROACH) detects and tracks objects around the car. It’s part of an active safety system that can warn drivers about possible collisions and, if necessary, integrate with braking, steering, seatbelt and airbag systems to avoid, or minimise the consequences of, an accident.

Continue reading Car makers queuing to see Melbourne ROACH

Granular plant protection

A farmer whose onion paddock is hit by the fungal disease “white rot” faces the loss not only of that crop but of productive use of the field for several years. Relief could be at hand, however, thanks to a novel granulated fungicide now being tested in the field in Victoria.

A new granulated fungicide will help onion farmers treat white rot. Credit: iStockphoto

“In the case of white rot, there is no existing commercially acceptable treatment and if a farmer has an infestation in their field they can’t use it for onions or similar crops for up to 15 years,” says Anthony Flynn, managing director of the agricultural chemical research company Eureka! AgResearch. “They’ve just had to move the crop on to the next paddock.”

The new granulated fungicide targets the soil-borne fungus Sclerotium cepivorum.
Continue reading Granular plant protection

Live streaming for healthy waterways

Water sampling devices are keeping watch around the clock for toxic discharges into Melbourne’s creeks and stormwater drains, thanks to Victorian researchers at the Centre for Aquatic Pollution Identification and Management (CAPIM), based at the University of Melbourne.

Victorian researchers are developing real-time sensors of water quality. Credit: iStockphoto

And, they are also developing a new range of aquatic critter-containing sensors.

The Autonomous Live Animal Response Monitors (ALARM) will house live molluscs, insects or shrimps and transmit images and data to scientists via the web, in the ultimate test of a creek’s health. Continue reading Live streaming for healthy waterways

Hidden art revealed

A glimpse of a rare self-portrait by one of Australia’s most highly regarded artists has emerged from what appeared to be a blank canvas—thanks to researchers at the Australian Synchrotron.

A rare Streeton self-portrait, revealed in this image of zinc atoms. The highest concentrations are in the white of Streeton’s collar and the fairness of his face because zinc is used in the white pigment. Credit: Daryl Howard
A rare Streeton self-portrait, revealed in this image of zinc atoms. The highest concentrations are in the white of Streeton’s collar and the fairness of his face because zinc is used in the white pigment. Credit: Daryl Howard

A glimpse of a rare self-portrait by one of Australia’s most highly regarded artists has emerged from what appeared to be a blank canvas—thanks to researchers at the Australian Synchrotron.

Continue reading Hidden art revealed

New light on storing energy

Solving the problem of how to store energy is essential for a future run on renewables.

That’s why promising materials for hydrogen fuel cells and high capacity, long-lived batteries are being explored at the atomic level by the Australian Synchrotron.

QUINFEN GU IS INVESTIGATING A NEW CLASS OF HYDROGEN STORAGE MATERIALS. CREDIT: ISTOCKPHOTO

Australian Synchrotron scientist Dr Qinfen Gu is investigating a new class of hydrogen storage materials being developed by scientists at the University of Wollongong and their international collaborators.Qinfen is using the powerful X-rays of the synchrotron to observe and analyse the structure of these materials. Continue reading New light on storing energy

Clues to switching off your blood clots

Our blood has a built-in system for breaking up heart attack-inducing clots—and we’re a step closer to drugs that could switch that system on at will.

The molecular structure of plasminogen Credit: Prof James Whisstock/Australian Synchrotron
The molecular structure of plasminogen. Credit: Prof James Whisstock/Australian Synchrotron

Australian researchers have won the decades-long race to define the structure of plasminogen—a protein whose active form quickly dissolves blood clots.

The current crop of clot-busting drugs have many side effects, including bleeding and thinning of the blood, so harnessing the body’s own mechanism for clearing clots could offer a better way. Continue reading Clues to switching off your blood clots

Changing the world one molecule at a time

Many plastics and polymers—including paints, glues and lubricants—will be transformed in the coming years by the work of Australian chemists, Professors David Solomon and Ezio Rizzardo.

David Solomon (left) and Ezio Rizzardo (right) with Prime Minister Julia Gillard. Credit: Prime Minister’s Science Prizes/Irene Dowdy

Their work is integral to more than 500 patents and their techniques are used in the labs and factories of DuPont, L’Oréal, IBM, 3M, Dulux and more than 60 other companies.

Eventually, the pair’s chemical theories and processes will influence hundreds of products.

Continue reading Changing the world one molecule at a time

Health check for live cells

Unhealthy cells are less “squishy” than their healthy counterparts. That difference is used by a small device developed by engineers at Monash University to test living blood cells for diseases, such as malaria and diabetes. The device can then sort the cells for future culturing and experimentation without harming them.

A simulation of a red blood cell being trapped and strained for measurement in the Monash device. Credit: Yann Henon, Andreas Fouras & Greg Sheard
A simulation of a red blood cell being trapped and strained for measurement in the Monash device. Credit: Yann Henon, Andreas Fouras & Greg Sheard

The patented “lab-on-a-chip” and accompanying control system has attracted considerable interest from pharmaceutical companies, according to co-inventor Dr Greg Sheard of the Department of Mechanical and Aerospace Engineering. Continue reading Health check for live cells