Reducing the impact of earthquakes

Working together, researchers in Japan and Australia are getting better at predicting the areas most at risk from earthquakes.

They are also working together on ways to determine, within seconds of a warning, the scale and likely impact of an earthquake.
Rapid detection and warning systems combined with smart engineering saved many lives in the Great Japanese Earthquake of 2011. But the earthquake and the resulting tsunami were much bigger than geological modelling suggested. The reasons for that might be found in deep history.

Mapping the hazard

Big earthquakes may be separated by centuries or millennia. But earthquake hazard maps are based on information gathered since 1900 when modern seismographs came into use. It’s difficult to model events happening over millennia when you have not got deep historical information. Continue reading Reducing the impact of earthquakes

Predicting change, brains, trains and mental health

State Awards

“Trait-based ecology” enables Macquarie University’s Mark Westoby to explain patterns of species occurrence and abundance and to understand the impacts of climate change and changing patterns of land use. He received the $55,000 NSW Scientist of the Year.

Nanocapsules for drugs delivery: Frank Caruso is making miniature capsules that could better deliver drugs for cancer, AIDS and cardiovascular diseases. He won one of the 2014 Victoria Prizes for Science & Innovation worth $50,000.

Continue reading Predicting change, brains, trains and mental health

Australian Academy of Science Early-career Awards

Julie Arblaster’s climate research is helping to explain the climate of the Australian region, particularly the ozone hole, El Niño, the monsoon, and Australian rainfall variability.

David Warton is driving data analysis in ecology, making it a more predictive science. His tools are influencing statistics across science and industry.

Christian Turney has pioneered new ways of combining climate models with records of past climate change spanning from hundreds to thousands of years.

Maria Seton has redefined the way we reconstruct the movement of continental plates and contributed to studies on the effect ocean basin changes have had on global long-term sea level and ocean chemistry. Continue reading Australian Academy of Science Early-career Awards