Helping eyes to help themselves

Donor corneas conditioned with DNA before being transplanted into new eyes are already actively contributing to their own success in experimental animals such as sheep.

An Australian research group is making corneal transplant easier. Credit: iStockphoto
An Australian research group is making corneal transplant easier. Credit: iStockphoto
The DNA is inserted into the cells of the cornea after it has been harvested. Then, following implantation, it produces proteins that help overcome immunological rejection.

This is one of many strands of research aimed at increasing the success rates of corneal transplants and other eye disease treatments undertaken by Prof Keryn Williams at Flinders University.
Continue reading Helping eyes to help themselves

Two steps forward for cancer detection

An Australian invention is making it cheaper, quicker and safer to manufacture the radioactive tracers used in latest medical imaging techniques to track down increasingly smaller clusters of cancer cells.

Two steps forward for cancer detection
The two-step dual reactor, FlexLAB. Credit: iPHASE Technologies

Like preparing a cake in a mixing bowl, the chemical reactions to make the tracers involve putting the ingredients together in the right proportions. The next generation of tracers can have a more complex recipe—and so can be more difficult to produce using just one ‘mixing bowl’ at a time.
Continue reading Two steps forward for cancer detection

Unmasking melanoma early

There’s a new diagnostic tool being developed to target melanoma, the deadly form of skin cancer with which more than 10,000 Australians are diagnosed each year.

Unmasking melanoma early
The red arrows show a melanoma tumour. The PET/CT scan on the right shows how the MEL050 tracer highlights the location, size and spread of melanoma. Credit: Peter MacCallum Cancer Centre

It’s a chemical compound designed to highlight small traces of these cancer cells in the body.

Melanoma occurs when the cells that make melanin, the dark pigment normally found in the skin, become cancerous. Melanoma cells often spread elsewhere in the body before the primary tumours are detected and removed surgically. Clusters of these melanoma cells can be hard to detect before they grow into tumours by which time they are often incurable.
Continue reading Unmasking melanoma early

Mapping the seafloor from space

We know more about the topography of Mars than that of Earth because 70 per cent of our planet is covered by water.

Kara Matthews has mapped the seafloor using satellite data and software. Credit: Kara Matthews

Now University of Sydney PhD student Kara Matthews has used satellite data and GPlates, a computer package developed at the University, to create a complete digital map of the many geological features of the seafloor.

Fracture zones—the orange lines in the accompanying image—are deep linear scars on the seafloor that extend perpendicular to the boundaries where tectonic plates are moving apart, revealing up to 150 million years of plate movement. They are accompanied by huge ridges on the seafloor, rising up to 2 km above the abyssal plains, and valleys as deep as 8 km below sea level.
Continue reading Mapping the seafloor from space

Slide back in time and see the Himalayas form

Researchers in the School of Geosciences at the University of Sydney have developed a computer package that lets scientists record and study the Earth over geological time.

GPlates moves geology into the fourth dimension
GPlates image showing topography (left) and predicted temperature 300 km below surface (right) as India moves towards the Eurasian continent 60mya. Credit: Sabin Zahirovic, EarthByte

Their GPlates software, which they describe as “Google Earth with a time-slider,” contains powerful tools for modelling geological processes. Yet it is simple enough to use in schools or at home, and is freely available. By combining data on continental motion, fossils and sediments, for example, scientists can analyse changes in geography, ocean currents and climate over geological time.
Continue reading Slide back in time and see the Himalayas form

Australian scientists elected to Royal Society

Four of Australia’s most accomplished scientists have been elected to the oldest scientific academy in continuous existence, the Royal Society of London.

PROF IAN FRAZER LAUNCHES THE CERVICAL CANCER VACCINE GARDASIL. CREDIT: UNIVERSITY OF QUEENSLAND

Prof Ian Frazer, Prof Alan Cowman, Prof Mark Randolph and Dr Patrick Tam join 40 other scientists to be elected to the Royal Society in 2011, which celebrated its 350th anniversary last year.

Continue reading Australian scientists elected to Royal Society

Computing with a single electron

Australian engineers and physicists have developed a ‘single electron reader’, one of the key building blocks needed to make a quantum computer.

Computing with a single electron
Andrew Dzurak (left), Andrea Morello and their colleagues have read the spin of a single electron. Credit: UNSW
Quantum computers will use the spin, or magnetic orientation, of individual electrons for their calculations. And, because of the quantum nature of electrons, quantum computers could be exponentially faster at certain tasks than traditional computers.

In order to employ electron spin, a quantum computer needs both a way of changing the spin state (writing information) and of measuring that change (reading information). Together these two form a quantum bit or qubit – the equivalent of the bit in a conventional computer.
Continue reading Computing with a single electron

Soaking up gases with molecular sponges

Absorbing carbon emissions from power stations and creating a new generation of hydrogen fuel tanks in future vehicles are just some of the potential applications of Dr Deanna D’Alessandro’s discoveries in basic chemistry.

She has created new, incredibly absorbent chemicals that can capture, store and release large volumes of gas.

It’s all to do with surface area, says Deanna, a postdoctoral research fellow in the School of Chemistry at The University of Sydney.

She has constructed crystals that are full of minute holes.

One teaspoon of the most effective of these compounds has the surface area of a rugby field.

What’s more, the size and shape of the pores can be customised and changed using light. So she believes she can generate molecular sponges that will mop up carbon dioxide, hydrogen, or in theory almost any gas—and then release it on cue.

In 2010, her achievements won her a $20,000 L’Oréal Australia For Women in Science Fellowship which provided equipment, travel support and a student to assist her.

Deanna’s compounds have similar molecular structures to those in seashells and the microscopic marine plants called diatoms.

These naturally-occurring materials are commonly used in toothpaste, laundry detergents, kitty litter and other industrial applications.

But her high tech equivalents are crystals known as metal-organic frameworks—clusters of charged metal atoms linked by carbon-based groups.

While she didn’t invent these frameworks, Deanna has developed new kinds of them which are more robust and possess the molecular pores that can be shaped by light.

Photo: Deanna D’Alessandro, The University of Sydney. Credit: L’Oréal Australia/SDP media

School of Chemistry, The University of Sydney, Deanna D’Alessandro, Tel: +61 2 9351 7392, deanna@chem.usyd.edu.au, scienceinpublic.com.au/loreal

Take control of your hearing

Australian researchers have invented a small, smart, self-managed hearing aid that outperforms most conventional hearing aids for less than half the price.

SARAH BELLHOUSE MODELLING THE IHEARYOU HEARING AID. CREDIT: MARK COULSON

It uses technology first developed for Australia’s bionic ear, and is so simple to set up that most users can buy one over the internet and fit it themselves.

That brings the cost down to between $1,000 and $1,500, or less than $3,000 for a pair.

The user can then easily fine-tune it and even switch the settings to suit the home, work, or the pub.
Continue reading Take control of your hearing

Fighting back against malaria

Some of the biochemical tricks the malaria parasite uses to become resistant have been unravelled thanks to a series of discoveries by Dr Rowena Martin and her colleagues at the Australian National University.

She is using those insights to give a new lease of life to chloroquine, the wonder drug against malaria first discovered in the 1950s.

For more than half a century chloroquine saved hundreds of millions of lives, but now chloroquine-resistant malaria strains have become common in developing countries.

Rowena is working to understand what happened. The single-celled malaria parasite enters our bodies when we are bitten by an infected mosquito.

It eventually invades and plunders our red blood cells, consuming the haemoglobin contained within.

The digestion of haemoglobin, which takes place in the parasite’s stomach compartment, releases the iron-containing, nonprotein component, haem.

Free haem is toxic to the parasite, which responds by converting it to a harmless crystal. Chloroquine works by blocking the formation of these crystals.

Ten years ago researchers discovered that just a few small changes in a protein PfCRT were enough to give the parasite resistance to chloroquine. But they did not know what the changes did.

Rowena developed a system to study PfCRT in frog eggs—allowing her to examine it in isolation and in detail.

“We found that it moves chloroquine out of the parasite’s stomach compartment so that the drug can’t accumulate at its site of action.” For her achievements to date, in 2010 Rowena won a $20,000 L’Oréal Australia For Women in Science Fellowship.

Photo: Rowena Martin, the Australian National University, Canberra/The University of Melbourne. Credit: L’oréal Australia/SDP media.

Research School of Biology, The Australian National University, Rowena Martin, Tel: +61 2 6125 8589, Rowena.Martin@anu.edu.au, www.scienceinpublic.com.au/loreal