Research on the effects of the popular joint supplement glucosamine has raised fears for women’s fertility, and a knee-jerk reaction from the vitamin industry, as Adelaide scientists reveal its threat to conception.
An obese father increases the risk of his children and grandchildren becoming obese, even if they follow a healthy diet. That’s the implication of a series of mouse studies conducted at the University of Adelaide.
The researchers found that a father’s high-fat diet could change the molecular make-up of his sperm, leading to obesity and diabetes-like symptoms in two generations of offspring.
“With obese fathers, changes in the sperm’s microRNA molecules are linked with programming the embryo for obesity or metabolic disease later in life,” says Tod Fullston, the study’s lead author and an NHMRC Peter Doherty Fellow with the University of Adelaide’s Robinson Research Institute.
Large numbers of premature-born children may be slipping under the radar, say researchers who have found brain development problems in teenagers deemed clinically normal after a late preterm birth.
Julia Pitcher and Michael Ridding, of the Robinson Research Institute, University of Adelaide, found that children born even one to five weeks premature showed reduced ‘neuroplasticity’ as teenagers. Their study provides the first physiological evidence of the link between late preterm birth and reduced motor, learning and social skills in later life.
New Australian technology will enable real-time monitoring of wine throughout its fermentation and maturation process, reducing spoilage and improving quality.
The “Smart Bung” technology has been pioneered at the University of Adelaide by the Institute for Photonics & Advanced Sensing (IPAS) and the School of Agriculture, Food and Wine (SAFW). The work is led by Prof Tanya Monro, Director of IPAS.
An optical fibre sensor incorporated into the bung of a wine cask can detect substances that might cause the wine to spoil. The optical fibres have tiny holes that take up minute samples of the wine. The sensor shines light through the fibres to determine the concentration of certain important chemicals, such as hydrogen peroxide and sulphur dioxide—all without having to open the cask. The system will enable continuous, real-time cask-by-cask monitoring and an immediate response if problems are detected.
In 2012, scientists celebrated at the announcement of the discovery of a Higgs boson-like particle, a subatomic particle that completes our model of how the Universe works.
The announcement was made simultaneously at CERN in Geneva, and to hundreds of physicists gathered in Melbourne for the International Conference on High Energy Physics.
“As scientific discoveries go, this is up there with finding a way to split the atom,” says Prof Geoff Taylor, director of the ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP).
The energy of ultra-high energy (UHE) cosmic rays that strike the Earth’s atmosphere make the energy produced from particle collisions by the Large Hadron Collider look puny. A team based in South Australia is now developing the techniques and technology to find out where such energetic particles could possibly originate. They ultimately hope to use the proposed SKA telescope to conduct their search.
“We think some cosmic rays are produced in the remnants of supernovae—exploding stars—but where the most energetic ones come from, that’s a mystery,” says Justin Bray, a PhD student hunting for their source as part of the LUNASKA (Lunar Ultra-high-energy Neutrino Astrophysics using SKA) project led by Ray Protheroe at the University of Adelaide and Ron Ekers at CSIRO. Continue reading Tracing cosmic rays from radio pulses→
Einstein’s general theory of relativity predicts them, and they could be scattered throughout the Universe. But so far, gravitational waves— ‘ripples’ in the fabric of space and time—have never been detected. Several Australian teams of astronomers are trying to catch the first signs of one.
The only way to find out whether the internal structures of an aircraft are corroded is to pull the plane apart and look. But new nanotechnology-based techniques being developed by Prof. Tanya Monro, Director of University of Adelaide’s Centre of Expertise in Photonics, in collaboration with the Defence Science and Technology Organisation, could make costly visual inspection in preventive aircraft maintenance a thing of the past.