To read about Japan-Australia innovation collaborations—including searching for new malaria drugs, giant robot trucks carrying ore, and chewing gum that reverses tooth decay—click here.
Japanese science changing Australia
The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD. Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.
Fundamental science discoveries are bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps—lasting a lifetime and using a fraction of the energy.
In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using induced pluripotent stem cells to develop stem cell medicines.
The impact of Japanese technological prowess on Australian society is obvious for all to see. How we listened to music was transformed by audio recording technologies: from the Walkman to the CD.
Home entertainment was changed by video tapes, DVDs, and game consoles. We rely on Japanese innovation in transport—reliable car engineering, the lean manufacturing techniques that made them affordable and, more recently, hybrid cars.
Fundamental science discoveries are now bringing a new era of transformation. Japanese researchers were honoured last year with the Nobel Prize for their invention of the blue LED. They succeeded where for 30 years everyone else had failed. Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps— lasting a lifetime and using a fraction of the energy.
In 2006 Shinya Yamanaka discovered how intact mature cells in mice could be reprogrammed to become immature stem cells. By introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, that is, immature cells that are able to develop into all types of cells in the body. His work is transforming stem cell medicine and many Australian researchers are now using his induced pluripotent stem cells to develop stem cell medicine.
Australian science changing Japan
It’s not a one way trade. Japanese lives are being improved by Australian inventions such as the bionic ear, gum that repairs tooth decay, sleep disorder treatments, lithium to treat bipolar disorder, aircraft black boxes, and anti-flu drugs, which are all in daily use in Japan.
And when you connect to a fast and reliable wi-fi network you can thank Australian astronomers who were searching for black holes and created tools for cleaning up radio waves.
Collaborating for the future
Today there are hundreds of thriving Australia–Japan research collaborations, many of which will have a profound impact on our lives in the years ahead.
Over the past five years, Japan has consistently placed within the 10 countries that have the highest number of collaborations with Australian researchers on Australian Research Council–funded projects. The ARC reports that the most popular disciplines for collaboration with Japan are: material engineering; biochemistry and cell biology; atomic, molecular, nuclear, particle and plasma physics; astronomical and space sciences and plant biology.
Other collaborations
Seeing every cell in a whole adult brain
Scientists from RIKEN, the University of Tokyo, JAST, and the Queensland University of Technology have developed CUBIC—a technique for rapidly imaging the brain. They believe it will be scalable to whole bodies.
Biomedical applications for ‘magic crystals’
CSIRO and Osaka Prefecture University are developing biomedical applications for the massively absorbent metal–organic framework crystals developed by CSIRO.
How our phones track us
Billions of us now have phones that tell us and others where we are and what’s around us. A team from RMIT, Intel, Fudan University and Keio University is exploring the cross-cultural and intergenerational study of this phenomenon, and the implications for privacy, in three key sites: Tokyo, Shanghai and Melbourne.
For the one in five Australians of working age suffering from serious chronic pain, the options for relief are strictly limited. There’s morphine and . . . well, there’s morphine. But now one of the most powerful toxins in the natural world—the venom of marine cone snails—offers hope of a future free of pain and addiction, say researchers at RMIT University.
“The big problems with morphine are addictiveness and the fact that people develop a tolerance to it,” says Professor David Adams, director of the RMIT Health Innovations Research Institute. “With the painkillers derived from cone snail venom, we don’t have those problems. People don’t develop tolerance, and they don’t get hooked.
Flash flooding, brought on by sudden torrential rain, killed dozens of people in Australia in 2011. Because of their very nature, it has been difficult to provide effective warnings. And that is a significant gap in Australia’s natural disaster management, according to the submission of RMIT University’s Centre for Risk and Community Safety to the 2011 Queensland Floods Commission of Inquiry.
We now have the technology to deliver such warnings, says director of the Centre, Prof John Handmer. “But using it would raise issues about how quickly both the authorities and people at risk are prepared to make critical decisions when they receive the information.”
Prostate and other soft-tissue cancers are often treated with radioactive sources implanted or inserted into the body. But monitoring the dose is problematic.
Medical physicists at Melbourne’s RMIT University are developing a technique to monitor the radiation dose more accurately.
In high dose rate brachytherapy, tumours are targeted by radioactive sources temporarily inserted into the body.
“Until now, it has not been possible to check at the time of delivery whether the doses received by the tumour and by surrounding healthy tissue matched the planned levels,” says Dr Rick Franich, Medical Radiation Physics group leader at the University’s Health Innovations Research Institute. Continue reading Curing cancer with radiation – safely→
Imagine a future where recharging your tablet could be as easy as typing a tweet—where portable electronic devices power themselves without ever plugging into the grid.
Researchers at RMIT University, Melbourne have assessed the capacity of piezoelectric films—thin layers that turn mechanical pressure into electricity—to do this.
The study is the first to evaluate how piezoelectric thin films, a thousandth of a millimetre thick, perform at the molecular level, precisely measuring the level of electrical voltage and current—and therefore, power—that could be generated. Continue reading A step towards an everlasting battery→
Why does the same species of strawberry taste different in different countries? How is it that Californian strawberries are loved by locals but fail to impress Down Under?
RMIT University researchers, Assoc. Prof. Eddie Pang and Prof. Phil Marriott, are looking for answers to those questions to help Australian strawberry growers identify which breeds grow best in which region.
A new oral vaccine against shellfish allergies is being developed by researchers at RMIT University.
Assoc. Prof. Andreas Lopata and his team in RMIT’s School of Applied Sciences are working to help find a different method for vaccination against the potentially deadly allergy.
RMIT University researchers have used nanotechnology to create a pioneering sensor that can precisely measure one of the world’s most poisonous substances—mercury.
The mercury sensor developed by RMIT’s Industrial Chemistry Group uses tiny flecks of gold that are nano-engineered to make them irresistible to mercury molecules.