Archives
In your face: new role found for blood vessels
Blood vessels act as tissue engineers during facial development, guiding the formation of jaw structures in mice, according to research from South Australia.
Continue reading In your face: new role found for blood vessels
The genetics of epilepsy: bringing hope to families
Sam Berkovic and Ingrid Scheffer have changed the way the world thinks about epilepsy, a debilitating condition that affects about 50 million people.
Twenty years ago doctors tended to regard most forms of epilepsy as acquired rather than inherited. In other words, they believed epilepsy was mostly due to injury: the result of things like a crack on the head in a car accident, a bad fall in the playground, a tumour, or something having gone wrong in labour. Parents felt responsible and the resulting guilt was enormous.
The two clinician-researchers from The University of Melbourne have led the way in finding a genetic basis for many epilepsies, building on their discovery of the first ever link between a specific gene and a form of epilepsy. Finding that answer has been of profound importance for families.
Along the way, Sam and Ingrid discovered that a particularly severe form of epilepsy, thought to result from vaccination, was actually caused by a gene mutation. This finding dispelled significant concerns about immunisation.
Continue reading The genetics of epilepsy: bringing hope to families
Solving rare disease mysteries
Dr Elena Tucker, geneticist, Murdoch Childrens Research Institute, Melbourne
Dr Elena Tucker has brought peace of mind to families affected by rare energy disorders. She’s found genes responsible for some of these diseases.
Now, with the support of her 2014 L’Oréal For Women in Science Fellowship, she will look at hundreds of individual genomes to determine the causes of sex-determination disorders.
For the thousands of families affected by these rare disorders Elena’s work provides an understanding of the causes and opens a path to management and to potential treatments one day. And the techniques she’s developing underpin the broader development of personalised medicine.
For her PhD, Elena used high-throughput DNA sequencing to investigate the genetics of mitochondrial disease. Mitochondria are the membranous structures in the cell where food is converted into the energy that powers our bodies. Anything that disables them, such as the mutation of a gene, robs the body of the energy it needs to function. This can lead to symptoms such as seizures, muscle weakness, developmental delays, liver dysfunction, heart failure or blindness.
Elena discovered four genes, and helped in finding an additional four, within which mutations have a direct link to such conditions. This has accounted for a significant proportion of new genetic diagnoses of mitochondrial disease.
How flies can help us predict the future
Dr Vanessa Kellermann, evolutionary biologist, Monash University, Melbourne
Our planet’s climate is changing. How will bees cope—will they still be able to pollinate our crops? Will dengue and malaria–carrying mosquitoes spread south?
Vanessa Kellermann is working with native fruit fly species from Tasmania to tropical Queensland to find out. She has already demonstrated that tropical flies are more vulnerable to change in the long term. They don’t have the genetic capacity to evolve quickly. Now, with her L’Oréal For Women in Science Fellowship, she will explore how flexible they are in the short term—how individual insects can respond to change during their lifetimes.
“No one sets out to study flies,” she says. But they are perfect for asking basic questions that will allow us to create models of evolution and help people—from farmers to health professionals—plan for change.
When Dr Vanessa Kellermann tells people she studies flies, there’s an almost automatic assumption that she’s working to get rid of them. In fact, it’s quite the reverse. Vanessa would consider her research a success if her flies hung around for many more millions of years, along with most of the other plants and animals on Earth.
Clean water with crystals
Dr Cara Doherty, materials scientist, CSIRO, Melbourne
Cara Doherty is developing new technologies that could transform water filters, batteries and medical sensors, and clean up carbon emissions. And it all comes down to holes and surface area.
She has a vision for a new manufacturing industry for Australia. She works with crystals that are packed with… nothing. They’re highly porous sponges—down to a molecular level—and can be customised to absorb almost any molecule.
These crystals are metal–organic frameworks (MOFs). They can be challenging to make. And it’s also difficult to determine which crystal will be good for which job. But it’s even harder to deploy the crystals—to put them in the right place to do useful work.
Cara uses antimatter (positrons) and synchrotron light (X-rays) to measure the crystals and their properties. Then she uses her patented technique to imprint useful shapes for devices.
With the help of her L’Oréal For Women in Science Fellowship she will investigate how to take the next step: to develop the 3D structures that would be needed for a smart water filter.
Motor races and science labs fuel interest in science
Each year in early July, when its 700 students are on holiday, Townsville State High School becomes the headquarters for a V8 Supercars race.
But before and after the race, Sarah Chapman’s Year 11 science students are hard at work, slopping their way through the nearby mangroves and wading into the neighbouring estuary. The data they collect is then used by the Great Barrier Reef Marine Park Authority to manage the impact of the race on local estuaries. “The students are really taken by the idea that they are finding out things nobody else knows,” Sarah says.
Continue reading Motor races and science labs fuel interest in science
No more twinkle, junk and stars, now we know just where you are
Technology that ‘de-twinkles’ stars is being used to pinpoint manmade space junk and avoid devastating collisions like those dramatised in the movie Gravity.
Australian company Electro Optic Systems, based on Mount Stromlo in Canberra, is using adaptive optics and pulsing lasers to locate detritus too small for conventional radar. Ultimately, the company hopes to use similar lasers to remove the debris from orbit.
Adaptive optics helps the pulsing lasers to cut through the Earth’s atmospheric turbulence, which distorts and scatters light, by using a second orange-coloured laser to illuminate sodium atoms in the upper atmosphere.
Continue reading No more twinkle, junk and stars, now we know just where you are