Michelle Simmons’ work building silicon atomic-scale devices is paving the way towards a quantum computer with the capacity to process information exponentially faster than current computers.
She is also Director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, acknowledged to be a world-leader in the field of quantum computing—which uses the spin, or magnetic orientation, of individual electrons or atomic nuclei to represent data.
In the past five years, Michelle’s research group and collaborators have made a number of notable advances. They have fabricated the world’s first single-atom transistor in single-crystal silicon, and the world’s narrowest conducting wires, also in silicon, just four atoms wide and one atom tall with the current-carrying capacity of copper.
Genes are not enough to explain the difference between a skin cell and a stem cell, a leaf cell and a root cell, or the complexity of the human brain. Genes don’t explain the subtle ways in which your parents’ environment before you were conceived might affect your offspring.
Another layer of complexity—the epigenome— is at work determining when and where genes are turned on and off.
Ryan Lister is unravelling this complexity. He’s created ways of mapping the millions of molecular markers of where genes have been switched on or off, has made the first maps of these markers in plants and humans, and has revealed key differences between the markers in cells with different fates.
Forty per cent of the energy consumed by industry is used to separate things— in natural gas production, mineral processing, food production, pollution control. The list goes on.
Each offers an application for Matthew Hill’s crystals. He has demonstrated that the space inside metalorganic frameworks (MOFs)—the world’s most porous materials—can be used as efficient and long-lasting filters.
By choosing different combinations of metals and plastics, Matthew’s CSIRO team can make a wide range of customised crystals. Then, using antimatter and synchrotron light, they map the internal pores, determine what each crystal can do and explore potential applications.
Quantum memory has been extended to six hours in an advance that brings the spirit of the Pony Express to quantum communications, raising the prospect of physical transport of ‘read once’ quantum ‘memory sticks’.
Physicists at the University of New South Wales are leading the race to build computers exponentially faster than any we currently use, according to an assessment published by the scientific journals group, Nature.
Albert Einstein famously dismissed quantum physics as “spooky action at a distance”, but quantum science may have the last word, with researchers in Brisbane and Tokyo finally providing the missing experimental proof.
Manufacturers are looking for ways to make their factories more sustainable, but before whacking a solar panel on the roof, they’ve got to plan carefully.
University of New South Wales researcher Assoc Prof Sami Kara says production lines need a steady supply of electricity, and if the sun goes behind a cloud, businesses get hit with penalty rates for suddenly drawing more energy from the grid.
A new brain implant could deliver anti-epilepsy drugs straight to where they’re needed and, in future, on demand. This will be particularly helpful for the 30 per cent of epilepsy patients who suffer severe side-effects, such as nausea, rashes, weight change and dizziness, from their medication, leaving them unable to be treated.
The implant is a biodegradable polymer that ARC Centre of Excellence for Electromaterials Science associate Bionics program leader A/Prof Simon Moulton compares to the types of polymers used in dissolvable stitches. Continue reading On-demand epilepsy drug→
Hundreds of Aussie science achievements that you can share in speeches, posts and publications