From little things, big things grow

Michelle Simmons’ work building silicon atomic-scale devices is paving the way towards a quantum computer with the capacity to process information exponentially faster than current computers.

She is also Director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, acknowledged to be a world-leader in the field of quantum computing—which uses the spin, or magnetic orientation, of individual electrons or atomic nuclei to represent data.

Michelle Simmons is one of only 11 Australians elected as a member of the American Academy of Arts and Sciences. Credit: UNSW
Michelle Simmons is one of only 11 Australians elected as a member of the American Academy of Arts and Sciences. Credit: UNSW

In the past five years, Michelle’s research group and collaborators have made a number of notable advances. They have fabricated the world’s first single-atom transistor in single-crystal silicon, and the world’s narrowest conducting wires, also in silicon, just four atoms wide and one atom tall with the current-carrying capacity of copper.

Continue reading From little things, big things grow

Why are cells different?

Genes are not enough to explain the difference between a skin cell and a stem cell, a leaf cell and a root cell, or the complexity of the human brain. Genes don’t explain the subtle ways in which your parents’ environment before you were conceived might affect your offspring.

Ryan Lister’s work transcends plants, animals and humans. Credit: The University of Western Australia
Ryan Lister’s work transcends plants, animals and humans. Credit: The University of Western Australia

Another layer of complexity—the epigenome— is at work determining when and where genes are turned on and off.

Ryan Lister is unravelling this complexity. He’s created ways of mapping the millions of molecular markers of where genes have been switched on or off, has made the first maps of these markers in plants and humans, and has revealed key differences between the markers in cells with different fates.

Continue reading Why are cells different?

Australian crystals clean gas, food, air…

Forty per cent of the energy consumed by industry is used to separate things— in natural gas production, mineral processing, food production, pollution control. The list goes on.

Matthew Hill’s crystals will save energy across industry. Credit: Prime Minister’s Prizes for Science/WildBear
Matthew Hill’s crystals will save energy across industry. Credit: Prime Minister’s Prizes for Science/WildBear

Each offers an application for Matthew Hill’s crystals. He has demonstrated that the space inside metal–organic frameworks (MOFs)—the world’s most porous materials—can be used as efficient and long-lasting filters.

By choosing different combinations of metals and plastics, Matthew’s CSIRO team can make a wide range of customised crystals. Then, using antimatter and synchrotron light, they map the internal pores, determine what each crystal can do and explore potential applications.

Continue reading Australian crystals clean gas, food, air…

Harnessing waste energy to power factories

Manufacturers are looking for ways to make their factories more sustainable, but before whacking a solar panel on the roof, they’ve got to plan carefully.

Sami Kara is developing a tool to help industry become more sustainable. Credit: ISTOCKPHOTO

University of New South Wales researcher Assoc Prof Sami Kara says production lines need a steady supply of electricity, and if the sun goes behind a cloud, businesses get hit with penalty rates for suddenly drawing more energy from the grid.

Continue reading Harnessing waste energy to power factories

On-demand epilepsy drug

A new brain implant could deliver anti-epilepsy drugs straight to where they’re needed and, in future, on demand. This will be particularly helpful for the 30 per cent of epilepsy patients who suffer severe side-effects, such as nausea, rashes, weight change and dizziness, from their medication, leaving them unable to be treated.

Simon Moulton is developing a brain implant to deliver epilepsy drugs when and where they are needed
Simon Moulton is developing a brain implant to deliver epilepsy drugs when and where they are needed. Credit: ARC Centre of Excellence for Electromaterials Science

The implant is a biodegradable polymer that ARC Centre of Excellence for Electromaterials Science associate Bionics program leader A/Prof Simon Moulton compares to the types of polymers used in dissolvable stitches.
Continue reading On-demand epilepsy drug