Pain relief from the sea

For the one in five Australians of working age suffering from serious chronic pain, the options for relief are strictly limited. There’s morphine and . . . well, there’s morphine. But now one of the most powerful toxins in the natural world—the venom of marine cone snails—offers hope of a future free of pain and addiction, say researchers at RMIT University.

PHOTO: CONE SNAILS MAY OFFER PAIN RELIEF. CREDIT: ISLAND EFFECTS
PHOTO: CONE SNAILS MAY OFFER PAIN RELIEF. CREDIT: ISLAND EFFECTS

“The big problems with morphine are addictiveness and the fact that people develop a tolerance to it,” says Professor David Adams, director of the RMIT Health Innovations Research Institute. “With the painkillers derived from cone snail venom, we don’t have those problems. People don’t develop tolerance, and they don’t get hooked.

Continue reading Pain relief from the sea

A smarter way to deliver drugs

Georgina Such

Georgina Such, The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)
Georgina Such, The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)

The University of Melbourne

Smart capsules could change the way we deliver drugs.

Today, when we’re treated for cancer, the drug spreads throughout the body indiscriminately. Along the way it causes side-effects such as nausea and hair loss. Continue reading A smarter way to deliver drugs

Milk could soothe the savage gum

Melbourne dental health researchers have discovered a painless, low-cost treatment which may prevent gum disease.

Milk could soothe the savage gum
A peptide found in milk may help prevent gum disease and protect teeth. Credit: Istock photos

And the key ingredients—protein fragments known as peptides—come from cows’ milk.

The link between the peptides and gum disease was forged at the Melbourne Dental School node of the Oral Health Cooperative Research Centre by Dr Elena Toh. “This could provide a cheap and simple way to help prevent gum disease,” she says. “And because the peptides are derived from milk, there should be no toxicity issues.”
Continue reading Milk could soothe the savage gum

Curing cancer with radiation – safely

Prostate and other soft-tissue cancers are often treated with radioactive sources implanted or inserted into the body. But monitoring the dose is problematic.

Curing cancer with radiation – safely
Computer simulation of brachytherapy prostate treatment showing radioactive source trajectories through the pelvic region. Credit: Rick Franich
Medical physicists at Melbourne’s RMIT University are developing a technique to monitor the radiation dose more accurately.

In high dose rate brachytherapy, tumours are targeted by radioactive sources temporarily inserted into the body.

“Until now, it has not been possible to check at the time of delivery whether the doses received by the tumour and by surrounding healthy tissue matched the planned levels,” says Dr Rick Franich, Medical Radiation Physics group leader at the University’s Health Innovations Research Institute.
Continue reading Curing cancer with radiation – safely

How a molecular assassin operates

The secrets of a molecular assassin could lead to more effective treatments for cancer and viral diseases, better therapy for autoimmune conditions, and a deeper understanding of the body’s defences enabling the development of more tightly focused immunosuppressive drugs.

How a molecular assassin operates
In this simulation, the perforin molecule (blue) punches a hole through the cell membrane (beige) providing access for toxic enzymes (red). Credit: Mike Kuiper
These are just some of the wide-ranging possibilities arising from research which has revealed the structure and function of the protein perforin, a front-line weapon in the body’s fight against rogue cells.

A pivotal role was played by 2006 Science Minister’s Life Scientist of the Year, molecular biologist Prof James Whisstock and his research team at Monash University. It was research fellow Dr Ruby Law who finally worked out how to grow crystals of perforin. And the team was then able to collaborate with Dr Tom Caradoc-Davies of the micro-crystallography beamline at the nearby Australian Synchrotron to reveal its complete molecular structure.
Continue reading How a molecular assassin operates

Saving our skins

Physicist Dr Amanda Barnard has been using supercomputers to find the balance between sun protection and potential toxicity in a new generation of sunscreens which employ nanoparticles.

Dr Amanda Barnard with one of her nanoparticle simulations Credit: L’Oréal/SDP Photo
Dr Amanda Barnard with one of her nanoparticle simulations Credit: L’Oréal/SDP Photo
The metal oxide nanoparticles which block solar radiation are so small they cannot be seen, so the sunscreen appears transparent. But if the particles are too small, they can produce toxic levels of free radicals.

Amanda, who heads CSIRO’s Virtual Nanoscience Laboratory, has been able to come up with a trade-off—the optimum size of particle to provide maximum UV protection for minimal toxicity while maintaining transparency—by modelling the relevant interactions on a supercomputer.
Continue reading Saving our skins

The life and death of blood cells

Dr Benjamin Kile of the Walter and Eliza Hall Institute for Medical Research in Melbourne has found why the blood cells responsible for clotting—platelets—have a short shelf life at the blood bank.

The life and death of blood cells
Benjamin Kile, winner of the 2010 Science Minister’s Prize for Life Scientist of the Year. Credit: Bearcage Productions
There’s a molecular clock ticking away inside them that triggers their death. He’s also discovered a gene critical for the production of blood stem cells in our bone marrow that happens to be responsible for a range of cancers.

These major discoveries earned Ben the 2010 Science Minister’s Prize for Life Scientist of the Year. Now he is trying to use them to extend the life of blood bank products, and get to the heart of some of the big questions in cancer.
Continue reading The life and death of blood cells

Back to the future for father of biotechnology

He’s back in the lab, working to convert the rich supply of stem cells found in the nose into specialised products to repair nerve damage or replace nerve cells lost in disorders such as hearing loss, Alzheimer’s and Parkinson’s disease.

Back to the future for father of biotechnology
John Shine, winner of the 2010 Prime Minister’s Prize for Science. Credit: Bearcage Productions
But that’s just the latest phase in the full and distinguished life of the 2010 winner of Australia’s Prime Minister’s Prize for Science, molecular biologist Prof John Shine.

In 2011, he is stepping down after more than 20 years as executive director of Sydney’s Garvan Institute of Medical Research which, under his guidance, has grown to a staff of more than 500, an annual budget of $50 million, and now boasts significant achievements in cancer, immunology, diabetes and obesity, osteoporosis and neuroscience.
Continue reading Back to the future for father of biotechnology

Skin deep discovery reveals immune mysteries

Cells involved in the first line of our immune defence have been located where they never have been found before—a discovery that could provide insight into diseases like psoriasis and other auto-immune conditions of the skin.

A stain showing the presence of gamma delta T cells (green) in the dermis. The blood vasculature is shown in red, while blue represent collagen. Credit: Centenary Institute
A stain showing the presence of gamma delta T cells (green) in the dermis. The blood vasculature is shown in red, while blue represent collagen. Credit: Centenary Institute

While researchers have known about these cells, called gamma delta T cells in the epidermis or top layer of skin for more than 20 years, this is the first time their presence has been detected in the next layer of skin down, the dermis.

Wolfgang Weninger, who led the study at Sydney’s Centenary Institute, says that gamma delta T cells are of particular interest because they produce a protein thought to be the ‘first responder’ when intruders are detected by the immune system.

Continue reading Skin deep discovery reveals immune mysteries

Stopping parasite means more, safer meat

The world’s meat production could be lifted by 10 to 15 per cent if a vaccine can be found to combat the liver fluke.

Stopping parasite means more, safer meat
Juvenile liver fluke parasites which cause serious disease in livestock and humans. Credit: D Piedrafita (Monash); T Spithill (La Trobe).
This is the aim of a collaborative bioscience group at the new $288 million Centre for AgriBioscience (AgriBio).

An effective vaccine against liver fluke could not only boost meat production but would also lead to a large reduction in the amount of drugs given to livestock, says Prof Terry Spithill, who is co-director of AgriBio and based at La Trobe University.
Continue reading Stopping parasite means more, safer meat