Life’s work closer to saving lives

What began decades ago as the discovery of an antibody from mice that targets human cancer cells is now undergoing human trials in the US as the basis of a treatment for acute leukaemia.

Life’s work may end up saving lives
Professor Andrew Boyd, who has seen his antibody discovery incorporated into a potential cancer treatment. Credit: QIMR
The antibody targets a protein called EphA3, which is found in about half of all acute leukaemias as well as many other human cancers including a significant proportion of malignant melanomas, brain tumours and lung cancers. The antibody, called KB004, has been shown to kill certain types of cancerous tumours grown from human samples.
Continue reading Life’s work closer to saving lives

A step towards an everlasting battery

Imagine a future where recharging your tablet could be as easy as typing a tweet—where portable electronic devices power themselves without ever plugging into the grid.

Pushing towards an everlasting battery
Electricity is generated as a force is applied to a piezoelectric film. Credit: Dr Daniel J. White
Researchers at RMIT University, Melbourne have assessed the capacity of piezoelectric films—thin layers that turn mechanical pressure into electricity—to do this.

The study is the first to evaluate how piezoelectric thin films, a thousandth of a millimetre thick, perform at the molecular level, precisely measuring the level of electrical voltage and current—and therefore, power—that could be generated.
Continue reading A step towards an everlasting battery

OPAL reactor fingerprints Aboriginal ochre

A Flinders University chemist is using Australia’s OPAL research reactor at Lucas Heights in Sydney to investigate ancient Aboriginal Australian society.

Using the technique called neutron activation analysis, Dr Rachel Popelka-Filcoff can “geochemically fingerprint” Aboriginal ochre pigments from different locations, archaeological sites and artefacts.

Applying nuclear power to research
Rachel Popelka-Filcoff can trace the cultural use of ochre using Australia’s research reactor. Credit: Ashton Claridge, Flinders Media
As the geochemical composition of ochre varies with location, she can correlate each sample with its site of origin, gaining information on cultural practices, travel and exchange patterns, and the relationship of Aboriginal people to the landscape. “Ochre pigments are highly significant in Aboriginal culture,” says Rachel. “Cultural expression often requires a specific pigment. Applying ochre to an object such as a spear can transform both its colour and its cultural meaning.”

Dr Roman Dronov, also from Flinders, is using the reactor to study the formation of bacterial protein layers. He is applying what he finds to constructing a new type of biosensor based on these layers and porous silicon. These highly sensitive devices can rapidly detect trace amounts of molecules, such as environmental poisons and markers of disease—a great improvement on traditional analytical methods.
Continue reading OPAL reactor fingerprints Aboriginal ochre

Helping eyes to help themselves

Donor corneas conditioned with DNA before being transplanted into new eyes are already actively contributing to their own success in experimental animals such as sheep.

An Australian research group is making corneal transplant easier. Credit: iStockphoto
An Australian research group is making corneal transplant easier. Credit: iStockphoto
The DNA is inserted into the cells of the cornea after it has been harvested. Then, following implantation, it produces proteins that help overcome immunological rejection.

This is one of many strands of research aimed at increasing the success rates of corneal transplants and other eye disease treatments undertaken by Prof Keryn Williams at Flinders University.
Continue reading Helping eyes to help themselves

Two steps forward for cancer detection

An Australian invention is making it cheaper, quicker and safer to manufacture the radioactive tracers used in latest medical imaging techniques to track down increasingly smaller clusters of cancer cells.

Two steps forward for cancer detection
The two-step dual reactor, FlexLAB. Credit: iPHASE Technologies

Like preparing a cake in a mixing bowl, the chemical reactions to make the tracers involve putting the ingredients together in the right proportions. The next generation of tracers can have a more complex recipe—and so can be more difficult to produce using just one ‘mixing bowl’ at a time.
Continue reading Two steps forward for cancer detection

Unmasking melanoma early

There’s a new diagnostic tool being developed to target melanoma, the deadly form of skin cancer with which more than 10,000 Australians are diagnosed each year.

Unmasking melanoma early
The red arrows show a melanoma tumour. The PET/CT scan on the right shows how the MEL050 tracer highlights the location, size and spread of melanoma. Credit: Peter MacCallum Cancer Centre

It’s a chemical compound designed to highlight small traces of these cancer cells in the body.

Melanoma occurs when the cells that make melanin, the dark pigment normally found in the skin, become cancerous. Melanoma cells often spread elsewhere in the body before the primary tumours are detected and removed surgically. Clusters of these melanoma cells can be hard to detect before they grow into tumours by which time they are often incurable.
Continue reading Unmasking melanoma early

Mapping the seafloor from space

We know more about the topography of Mars than that of Earth because 70 per cent of our planet is covered by water.

Kara Matthews has mapped the seafloor using satellite data and software. Credit: Kara Matthews

Now University of Sydney PhD student Kara Matthews has used satellite data and GPlates, a computer package developed at the University, to create a complete digital map of the many geological features of the seafloor.

Fracture zones—the orange lines in the accompanying image—are deep linear scars on the seafloor that extend perpendicular to the boundaries where tectonic plates are moving apart, revealing up to 150 million years of plate movement. They are accompanied by huge ridges on the seafloor, rising up to 2 km above the abyssal plains, and valleys as deep as 8 km below sea level.
Continue reading Mapping the seafloor from space

Slide back in time and see the Himalayas form

Researchers in the School of Geosciences at the University of Sydney have developed a computer package that lets scientists record and study the Earth over geological time.

GPlates moves geology into the fourth dimension
GPlates image showing topography (left) and predicted temperature 300 km below surface (right) as India moves towards the Eurasian continent 60mya. Credit: Sabin Zahirovic, EarthByte

Their GPlates software, which they describe as “Google Earth with a time-slider,” contains powerful tools for modelling geological processes. Yet it is simple enough to use in schools or at home, and is freely available. By combining data on continental motion, fossils and sediments, for example, scientists can analyse changes in geography, ocean currents and climate over geological time.
Continue reading Slide back in time and see the Himalayas form

Australian scientists elected to Royal Society

Four of Australia’s most accomplished scientists have been elected to the oldest scientific academy in continuous existence, the Royal Society of London.

PROF IAN FRAZER LAUNCHES THE CERVICAL CANCER VACCINE GARDASIL. CREDIT: UNIVERSITY OF QUEENSLAND

Prof Ian Frazer, Prof Alan Cowman, Prof Mark Randolph and Dr Patrick Tam join 40 other scientists to be elected to the Royal Society in 2011, which celebrated its 350th anniversary last year.

Continue reading Australian scientists elected to Royal Society

Computing with a single electron

Australian engineers and physicists have developed a ‘single electron reader’, one of the key building blocks needed to make a quantum computer.

Computing with a single electron
Andrew Dzurak (left), Andrea Morello and their colleagues have read the spin of a single electron. Credit: UNSW
Quantum computers will use the spin, or magnetic orientation, of individual electrons for their calculations. And, because of the quantum nature of electrons, quantum computers could be exponentially faster at certain tasks than traditional computers.

In order to employ electron spin, a quantum computer needs both a way of changing the spin state (writing information) and of measuring that change (reading information). Together these two form a quantum bit or qubit – the equivalent of the bit in a conventional computer.
Continue reading Computing with a single electron