All posts by Operations

Transistor model sets the standard

Dr Sourabh Khandelwal from the Department of Engineering has developed a model for a GaN (gallium nitride) transistor that has been adopted as an international standard.

Silicon transistors are a critical part of modern electronics. There’s a few million of them in your smartphone alone, but owing to their fundamental material limitations they’re extremely inefficient for emerging applications.

GaN transistors are emerging as a go-to technology for use in future applications like 5G communications, sensing electronics in autonomous cars, and compact converters for renewable energy. They’re more efficient than silicon, meaning they’ll use less power and can also be made smaller than silicon transistors. Continue reading Transistor model sets the standard

Using nanoparticles to better target cancer tumours

Dr Andrew Care from the Department of Molecular Sciences has been awarded a 2018 Early Career Fellowship from the Cancer Institute NSW.

Andrew’s fellowship will fund research looking at how biological nanoparticles can be used to better deliver anti-cancer drugs to destroy tumours.

Andrew and his team are re-engineering protein-based nanoparticles that are normally found in microorganisms, like bacteria. These re-engineered nanoparticles will be capable of carrying anti-cancer drugs to tumours inside the body. Continue reading Using nanoparticles to better target cancer tumours

Keeping ahead of a child killer: stopping gastro from birth

UPDATE 22 February 2018:  

A vaccine has been developed against rotavirus, which is the common cause  of severe diarrhoea and a killer of approximately 215,000 children under five globally each year.

The oral vaccine was given in three single doses, the first within five days of birth. After three doses of RV3-BB administered from birth:

  • 94 per cent of infants were protected in their first year of life against severe rotavirus gastroenteritis
  • 75 per cent of infants were protected to 18 months of age.

The success of the RV3-BB vaccine is the culmination of more than four decades of work, which started with the Murdoch Children’s Research Institute’s Professor Ruth Bishop and the discovery of rotavirus in 1973.

The trial was funded by the National Health and Medical Research Council (NHMRC), Bill & Melinda Gates Foundation and PT BioFarma.

Read the full media release on the MCRI website.

——

A new rotavirus vaccine should soon be available thanks to a collaboration between PT Bio Farma and researchers in Melbourne and Yogyakarta. The new ‘RV3’ vaccine is aimed at protecting babies from birth, improving protection and simplifying delivery.

The current vaccine, available in Australia and only on the private market in Indonesia, can only be administered from six weeks of age.

Continue reading Keeping ahead of a child killer: stopping gastro from birth

From car batteries to grid storage

There’s still life in lead batteries. East Penn Manufacturing operates the largest single-site, lead-acid battery manufacturing facility in the world in Berks County, Pennsylvania.

They argue that their new lead batteries are 99 per cent recyclable and ideal for large-scale storage.

To prove it, they’re developing a 3MW power storage system using the UltraBattery technology invented by Australia’s CSIRO.

By combining lead-acid technology with a supercapacitor, the UltraBattery not only charges and discharges rapidly, but lasts four to five times longer than an ordinary battery.

Are memories stored in DNA?

The idea that long-term memory might be stored in our brain’s DNA is being tested by Professor Geoff Faulkner, using brains affected by Alzheimer’s.

Geoff has already shown that the DNA in our brains is different to the DNA in the rest of our bodies and that it changes as we learn. He’s proposing that these changes are associated with how we store our long-term memories.

More recently, he’s linked these differences to the function of genes in the hippocampus, the part of the brain that controls memory and spatial navigation, and has been implicated in memory loss with ageing, schizophrenia and Alzheimer’s disease. Continue reading Are memories stored in DNA?

Unravelling atoms: the Centre for the Subatomic Structure of Matter

Almost all matter we can see and touch is made up of the protons and neutrons. But what are protons and neutrons composed of? The simple answer is quarks, of which there are six distinct kinds, held together by gluons.

The ‘strong force’ carried by gluons is about 100 times stronger than electromagnetism, which governs the interactions of atoms. It’s a major focus of the ARC Special Research Centre for the Subatomic Structure of Matter (CSSM).

Established 20 years ago at the University of Adelaide, the Centre is at the international forefront of investigating the ramifications of quantum chromodynamics (QCD), the theory which describes the strong force interactions that are fundamental to how our world works.

Continue reading Unravelling atoms: the Centre for the Subatomic Structure of Matter

Improving survival for patients with acute leukaemia

Today, 85 per cent of children with leukaemia can be cured, but the outlook for patients over 60 is bleak. Only 10 per cent survive beyond one year as their cancer adapts to weather the storm of standard chemotherapy treatments. Associate Professor Steven Lane wants to change that outlook.

Steven and his team at the QIMR Berghofer Medical Research Institute have developed a method to rapidly profile the genetics of different leukaemia types—of which there are hundreds—and model them in the lab.

This allows them to work with many leukaemia types simultaneously, providing a cheaper, faster and more accurate model of the leukaemia. Continue reading Improving survival for patients with acute leukaemia

After 160 years, it’s time to throw away the needle and syringe

Professor Mark Kendall is planning to dispatch the 160-year-old needle and syringe to history. He’s invented a new vaccine technology that’s painless, uses a fraction of the dose, puts the vaccine just under the skin, and doesn’t require a fridge.

The Nanopatch is a 1 cm square piece of silicon with 20,000 microscopic needles engineered on one side. Coat the needles with dry vaccine, push it gently but firmly against the skin, and the vaccine is delivered just under the outer layer of skin.

It’s a technology he invented in response to a call from the Bill and Melinda Gates Foundation seeking ideas for delivery of vaccines in developing countries—where it’s a challenge to keep conventional wet vaccines cold to the point of delivery.

Continue reading After 160 years, it’s time to throw away the needle and syringe

When boron nitride outshines gold and silver

Ultra-thin boron nitride outshines gold and silver when used to detect contaminants in smart sensing technology. 

It is 100 times more effective at detecting dangerous materials in our food and environment than noble metals.

Traditionally, detection surfaces of these devices have been made using gold and silver. But covering these metals with a microscopically thin layer of boron nitride greatly enhances their performance.

The findings are by a team from Deakin University’s Institute for Frontier Materials, Japan’s National Institute for Materials Science and China’s Wenzhou University. Continue reading When boron nitride outshines gold and silver