Australian citizen scientists are helping to catch shooting stars in the vast skies of outback Australia and to track the impact of climate change on species in our warming oceans.
Curtin University’s Fireballs in the Sky project invites people to use a smartphone app to record and submit the time, location, trajectory and appearance of meteors they spot.
By triangulating these reports with observations from an array of cameras in remote Western and South Australia, scientists can try to determine where the meteorite may have come from and where it landed.
A new breed of spacecraft engine is undergoing its first indoor test flights, thanks to a giant ‘wombat’ on the outskirts of Australia’s capital.
The Australian National University has developed a plasma thruster that uses electricity to ionise gas and produce thrust, allowing the engine to run for longer and with much less fuel than a chemical rocket.
This makes it ideal for manoeuvring satellites in orbit, or for extended voyages to places like Mars. However, rocket manufacturers need to be sure it works before trusting it on multimillion-dollar satellites.
Fundamental questions about the Universe are set to be answered as a new radio telescope in outback Western Australia comes online, using multiple beam radio receiver technology to view the sky with unprecedented speed and sensitivity.
The Australian SKA Pathfinder (ASKAP), CSIRO’s newest telescope, uses innovative phased array feed receivers, also known as ‘radio cameras’, to capture images of radio-emitting galaxies in an area about the size of the Southern Cross—far more than can be seen with a traditional radio telescope.
The end of any relationship can be rocky, but a Tasmanian geoscientist has dug into the ocean floor to understand how Australia, India and Antarctica parted ways 130 million years ago.
White blood cells have proven to be the serial assassins of the immune system, moving quickly on to their next target once they’re released from a dying cancer cell’s grip.
A typhoid outbreak in Kathmandu has provided new insights into bacterial epidemics and antibiotic resistance, thanks to a Melbourne scientist’s genomic research.
Kathryn Holt, of the University of Melbourne’s Bio21 Institute, used genome sequencing to discover that an epidemic of deadly typhoid bacteria in Nepal’s capital city was driven by climate, and not by the outbreak of novel genetic strains.
Her research, published in the Royal Society journal Open Biology, changes our understanding of how typhoid spreads and how we can better respond to other bacterial epidemics.
Bearded dragons are revealing some of the secrets behind their colour-changing ways, thanks to the work of a Melbourne evolutionary scientist.
Devi Stuart-Fox has discovered that bearded dragons change colour in response to heat, allowing them to regulate their body temperature.
Her research opens the way for scientists to imitate lizards and develop materials that respond to light and temperature for solar energy, sensor and biomedical applications.
Large numbers of premature-born children may be slipping under the radar, say researchers who have found brain development problems in teenagers deemed clinically normal after a late preterm birth.
Julia Pitcher and Michael Ridding, of the Robinson Research Institute, University of Adelaide, found that children born even one to five weeks premature showed reduced ‘neuroplasticity’ as teenagers. Their study provides the first physiological evidence of the link between late preterm birth and reduced motor, learning and social skills in later life.
Fifty million children in the world’s poorest countries will be vaccinated against the deadly rotavirus by 2015, thanks to the breakthrough work of a quiet Melbourne researcher.
Ruth Bishop’s rotavirus discovery led to the development of the vaccine currently being rolled out by the Global Alliance for Vaccines and Immunisation—and to her declaration as 2013 CSL Florey Medal winner.
Each year, around half a million children die from rotavirus infection and the acute gastroenteritis it causes.
Coastal land clearing has led to poor water quality in the Great Barrier Reef lagoon and threats to reef animals, according to the first data providing evidence of the damage.
The Water Quality and Ecosystem Health research team at the Australian Institute of Marine Science has collected 20 years of data, which shows the connection between high rates of land clearing and reduced reef water quality in the late 1990s and early 2000s.
“Our analyses show that water quality in the lagoon dropped significantly during the late 1990s and early 2000s, a period that coincided with very high rates of vegetation clearing on land adjacent to rivers,” says research team leader, Britta Schaffelke.